HOME | DD

Published: 2014-01-22 15:51:27 +0000 UTC; Views: 2091; Favourites: 32; Downloads: 71
Redirect to original
Description
for the Kaleidoscope Challenge double-ducks.deviantart.com/jo…UPDATE:
HA! Well..I did it again! lol I finally removed the mapping I copied to my standard folder and the parms
should open with no trouble now! Sorry about that!
UF
I tried around Christmas to give a few examples of how I do my repeating tiles but absolutely NO ONE
has tried them!! lol I think because I copied a few formula's that I use a lot into my Standard folder it
left most wondering what to do the instant they opened it to check out! I re did this one so it shouldn't
be a problem anymore.
This is a single layer fractal that uses Phoenix Julia with Thin Orbit Traps 2 and some mapping! Please
pay special attention to the mapping! It uses Tiles Deluxe and Kaleidoscope. This combo of mapping can
be applied to just about anything and it will look great (in my opinion anyway)! The order in which you place
the mapping matters also. Tiles Deluxe should be first then followed by Kaleidoscope!
I get the best results from playing with the Tile Aspect Ratio. By changing this and playing with the Rotation
Angle on the Location tab a lot of nice things will happen! Each angle change gives an almost completely new
and different looking fractal!!
For the Kaleidoscope mapping I always change the Symmetry Order to 4 from the default of 8. Below that setting
is one also called Rotation Angle. I always start with 15 and start playing from there! This can also be changed to
many many different looks by again changing the Rotation Angle on the Location tab!
This mapping combo and all it's flexibility will give you so many different looks that probably like me, you won't
be able to pick just one to render! lol
AND if all those tweaks aren't enough, you can tweak for hours on the Thin Orbit Traps 2 on the Outside tab!
I hope you enjoy this and can learn to appreciate the wonderful repeating tiles that can be made from this!
As much as I love creating a fractal, creating one that repeats seamlessly thrills me even more! Unfortunately
many people hate symmetry so the fractals produced from this technique will only be enjoyed by those who
like symmetry! (which doesn't seem to be very many)
Tile-Kaleidoscope {
::+UCh+gn2NiVWPuNOS43bg+/ghfNo7wTdsL0DzmdCQ2dndWspfvBbJKblorIR3tsx8jfKeKaH
1AzTuOILW1XdQKXPJKVi2/293tbnqR1KL2/UTr8h/toV2UNMXOMK3v7tmK1xiMEa3RZzhjKD
Zr4scauAr36kceo9kqZovIlsrcSW1omL2//bK/+uftttZQp+74PSIfkgws93fnZvmDtUMa22
+/ho87HmGO1Xtf3woosRduAjQ3fXnYcsp/gd1yelcq4B0jIaKPhyQpMO/jAPOPNhhQkMMmvr
TcovgtT0fACoc0O1kofueYqbugc/dBOjJrhwtX0BBeV33e80S9+dwhMd2wfDOM+885uhpKwF
Y69a4nk1tySVh73mXlW5/18VrZsrtb4VZR/Awb9cMH9+e73Oelz+tjPoAdzPUJbPtY81Xbkv
9bDVuU6uDTNV7tH3Qd9sUVg+ICYONL/65uOp2Mnlzgk+Td6dAglV9XA8U+Lzj6oEWh1G6TzJ
7RqzMQiX2/pBAha6FKwAW7pX6nsoBckrb/3g0UTdTpwUBg9G1E7wy0B9pWhJu7ELN69DVEob
TZ1dXly+fHHk9NL/rTtNCX8OLlV6EBhnlnxJIUmJNQz5UWWGNFWy4wbyJcBxAJGGyqz20XdC
iT0jMGLnhY6djIcCkHBtvIaaHOpKwPi+VCsjm+5mKptlyk8A/ufoXe/dwqCqqkwygacA8Crq
tpXKmiiPVn4xTltmwwFiPdsp/3nepR90kYc+Lf5hvK6+AsOTGHaI1QJ5RdI1pz9f9Unueq6V
6aqrcot4zn6L1w+u6nnVnblfuvsQ8iJbB2tuV86wUxnaHmlzKtwjQL+xh2Kb/+4z1m81YNAK
6qk3A26nr7rxFz/YSZpJOLC1TaXBi8elzDqhjzwDMylFcB2A8AJxRW3MbilQ+AOJk7wN8UbF
z04oZNQQNcaq4f2MrE9l6ewedcqLNLdedtZRTfuPc0lX1JUOrmk9HgRdWXo0euWGolE7Degm
YOdgg6JYO/RM+05RZxv/qod2C94Vof+oYU+LVf70sCbWfkAytCo3Kg5dgIZ8bXUytCSvVQ2G
mJ/2FhR/kE8G7Db96KA2HmUmMhjG6fMlBYTVgmisWCoZpu0gmmFRzjoTioTve7ZRqyjoBHPi
BHy1Qig4GIVu2aPNYd65mLSTkMJU2A/7NjYrKgiYm8g8DvgksAuWDmIZmdNbnarFrXspoTzY
GZpZGFKgsvwfoSdnqbW/88ojQK/PmbXNctOypORrnVXX1P4BgWcUg2SCB6F8grg+Ce2V9eBL
dUQ2ZYN8Bu5VF+1Aeyi/ygXFTPZPXnnMicW/HoV7M67g/hnY03I/DPBcreVVx/FmECec/paY
C0iapYup3GReRn1iMjN0jhsoxCAn4F3BbYOHxQW0Hh1TM8ndHpmhuEz41MaqhXjK5yYkRAuw
CB52fPb+VYkrh8lI4vc56izyzRKXiX55zxVkuCnjELR5RYQi03m1ZGbu/yH+jL/he8+Fracx
enAzCI/8KI2VEZF6PvIawMQ0uOAekuSSuCRYrK4rkJOS1buEi6NSgiGdh/bsgYegKxRNMW8h
QJQAtssXN2wKiezSY3wzLuInGCsJGW3s7qu5vbRbNByc9+rqgEiXkLlAJJlrpDc4FRnSPKQ3
E3XZLIqet+lO7iBC1idgCQ203oKuY35Fo5lB3eDTFGlV7us3UMoWinipWimj9S3ke2ZcVFYx
gowSIF1twLuC698gzOoE27kGUv4rpA6SvwKLxSjIkaWaexnmB6y1UuoKLuYQUl7vn+lu5SRr
d4Jwc1NqAv9ps+Vqkwt1P6e1rWrRi5FY69CPyyRav6lYZgpfdNBY95Z419hbUB4vyC+VySd2
BZJf2i+OonsB0zuulVtwDdm69bm2+JZTrRLIpQAvs4oDxIRIWUbiG08z70GZFaCcEPruSxrx
GgkV4NG55xG0fPlhxCEWUY8QoM9QvYq9ZPYY5uCOobAHJ3CHpB4QHw0oAmGViQjc0krLRSdq
sOgBPnkCLeew92QrONwAfjnBu9OgRTAzXXnN8j4JRC0fzQhhMGJsob028golFK7EvCftC31u
Pt2vP5bnVTXBg8NAQ/DPWRwoXfomAM0DhA9LeIEoLjgQ9zuixQc0kZ77SKL9P81+Cy6J5PgR
SWRQZ5jpefHSzIzXCA31VFeuZV4dmVhHYqL3M+8lprjhLNxPmSfbt/19EV8taUgTYv2+gcw3
v6yBgAdlqfcqAWr9aP7L3VrwaMqGBjXNjkcFHtQNBT4dFp4oiU81dl4YQOi23tqe1Bi2P7Fm
SqLHm8BB80l15OHmEVNgPY+QOow97wnXq7Dn7GGgveACO4Zl2vq9hcCaH89jyliHSzy3Z+Ck
iUGLhxN/HCBdJOdYWCClkvqg6UkwJcKn5VQTpm/SEjOSGJHT4hNli8WLJNNlgX1kwcaoU4UQ
Zx+QSYXMCONPNcWpcawecOmuaOGe1Jwk0EaGjEUiz8nVeeyqnniyux7icikcsTJLlCebwaJZ
Ev1Q5ZpkkgiE2qPQx8MKbVXwxpw+TorWjRCeNHyGoYXg6zFwOop5hcRC2DeAwRzgwzpgnzjh
BO4drOOP1n2BgDytreHPA4QWmTypROBn53VCinwTWPLKLYuMOKyJIZRFEICJb9gIeQlDpdWI
g4IfkyQZQuMuikl53TKHlnvCdskUPKAgdWKeVRUFZGFBnUInzYevmgxMMJ41Mq3ah+EGJd1O
QGAlmHiEGUK7i+80UINEUg8KyQQrBKOhmhCHOjmTogb6+LGNdw/Fab9/jkEOPqjVv5N1Q3SM
4Vbu6U07ZHoXdTxoNFzpvndY4NFDlObJ2OTYDN6WztEDNmbJ22WulG+mAhulZLx03Dn1tjbI
GaG3Uca+7YH+2AquDcLx03LugGwtFvJsB9evjd0debJG672U87l319cbJmutdsddbpBvJgq7
42QM0sdjdu/u/Ew/5g8Y
}
Heres an example of this fractal tiled
Related content
Comments: 31
caclegal [2015-07-20 02:02:57 +0000 UTC]
Fabulous, as are all of your tiles!!! Maybe some day I will learn to create them!!
👍: 0 ⏩: 1
Fractalholic In reply to caclegal [2015-07-20 04:05:18 +0000 UTC]
Thanks! I love doing them!!!!
👍: 0 ⏩: 1
mindpoet61 [2014-09-02 23:02:42 +0000 UTC]
I'm one of the few who LOVE symmetry. Have you tried out my Symmetry mapping in eew.uxf? Update formulas first.
I'll do this one.
👍: 0 ⏩: 1
Fractalholic In reply to mindpoet61 [2014-09-02 23:40:12 +0000 UTC]
OH thanks! I haven't tired it yet but I sure will.
Thanks also for giving this one a try! I sure appreciate it!
👍: 0 ⏩: 1
Fractalholic In reply to Manndacity [2014-08-28 20:28:21 +0000 UTC]
Thanks so much! I meant to put this in a challenge in Double Ducks
so others could have the parms and maybe do some nice stuff with
but they won't let it in cause it's already in another folder there! LOL
So I'm rendering another for em!
👍: 0 ⏩: 0
infinityfractals [2014-01-30 05:03:58 +0000 UTC]
Tile-Kaleidoscope542 {
::cb1OGhn2NiVWPuNOS43DQ/fwwvG0d4pOmB6hsZ3AEMbmBYTevBbJKblWXRiubZj5H/U8U0Oq
B2ncdQWsqv6gUueSUqEt/2dvb3OVjqVWs/7Nty7/DRrspaYucYUyZk97etpSdsIDh2dU2c4o
yQ2KOLnmLw6dPJnHaPpaG6LSJaBlTyqG1cx+P29kca3f0IrrlT/O+Dk8PQQY2v//aKfe3/pt
tZQp0iJGx7v7dGzacpSxoxi7/XiynPMNcqva/uhRRZj6cBGhu7ddixxm+D2VL7Vypi7RPg4I
WGjwokPAcEMJlxxZ48ddiD9F8HQIOLPjtT0fAC5ckJ8nE9z1DTdzFg/H4MWuGwkeRHgOVd/4
hTL173Bn10ZD/Vg1+djPOfubYqC8EmevG+JZdrsUV4+t5FpVekLTT5JUGC8Uu2px5pJMEikh
xcrZsrtb4FZR/AwbdeMH92e7POelz+jj3rAdz3XJbPtY81Xakv+1hKXef3hpmq92jboueWqK
QfABMnmlf7cXnUbmzyZQS/pO9OAwyq+LA0K/48oOKhVYth+0cyeg6MDUXI7/0AgQN9CFYAr9
0L9TW0AOy1t/VIj1U3UKMFCYvRNxOsMdQfqVYi7OxSje/QhB4zypyjyynLg4428Xd3V5v/c4
FxXF9Ao4C9ZlYSVgNR+4wrgJpG6nENtDnAMBKgQItvMJbFL6Ve37a6nbqk/2apEst+he5dvD
2SQVlEWGU8CwRYVtN9SxUkTq6EPcq06NO/87Hb6/rpnaUffSMO/lvc/3EdvHWnJHCNhawh8Q
Kw1pzmf7UnuCp6F6ayocot4zn6L1A5uaIIP3K/cfZh4JD+D2tuV8ywUxnaHmlzKtwjQb9xh2
KbP+4j1mMwYNAB68+rAb9j1914i5fOps0EnFhKEtrARevy5B1wxZ4BG5yC2hxAJxRW3MbilV
oHAb3hb4p2agpxRzagga40Ux/uByZ9l6uqedcqL2KdedtZRTfuPc0lXVbXOrmk9HgxbWXo0e
uWGoJD7DegmYOdgg6JYO/RM+9zjyi/6FR7sF6xrQ/8Rxo8jV/40sCbWfkAytCo3Kg5dgIZ8b
XUytCSvVQ2GmJ/2FhR/iE8G7Db96KA2HgWF0KNBY0lBYTVgmisWCoZpu0gmmFRzjoTioTve7
ZRqyjoBHPiBHy1Qig4GxUuOZZaw60zNXkmIZSosB+zNjYrKgiYmlg8jjgksAuvCmxYmGNbnD
rFrXspoTzYGCpZGFKgsvwfoSdnqb6988ojQK/vmbUNctOypORrnVXX1P4BgWcUg2SCB6F8gr
g+Ce2V9eBLdUQ2ZYN8Bu5VF+1Aeyif8+LipvbPXnnMicW/noV7M67g/pnY03I/TPBcddVVxf
CTCBPu/UNMBaRtUM30bjIvozaRmxG6xQW0YBgT8i7gNMnjYIuJv788ndHpmhuEz41MaqhXjK
5yYkRAuwCB52fPb+VYkrh8lI4vc56izyzRKXiX55zxVkuCnjELR5RYQi03m1ZGbu/y7/7L/t
e8+FracxenAzCI/6KI2VEZF6vuIawMQ0uOAekuSSuCRYrK4rkJOS1ruEi6VSgiGdF+rsgYeg
KxRNMW8+QJQAtssXN2wKiezSY3wzLuInGCsJGW3s7qu5ntotmQf4N9voCSIeRuUCkkUumOwh
XEdK9oAdTcfltgo6l6n6sLGIUL2BKAZTfjq4idnXgmXGc7NMVYUWt7yeTxgaJeKmaJaO2TdT
6ZnxVVgFDiCLhUU3CvhKo3zDO7gSYvTaQ9kvmCoL9CrsELNiQqZp5JfaGoLXT5iqs4iBRVu/
e6n6mLFt2hnAzV3oC82Hn6XpSC3W/g7dsatGJ0U3ehnH6ItX9SsMw0vumAs+4M809wNqA8XZ
B/KZpO7gskPaRfH0T2A6ZX3yqW4hOT9+NTb/ksp1oFkUIgXWc0hYkIELqNRDa+5dajsCNBOi
nVXp41YDQyK8Gj88YD6vnywYBCLKMeIUmeoXM1+oHMscXBH0Ngjkbhj0AcoDYaUATjKRoROa
y1lIpOVWHwgnTShFPP4eboVnGYgPezA3eHwoJg5rrzG+R8kIB6vCowQGjEW0NabeQ0yCldiX
gv/g7a3nW73n8tzqprAQ+GAo/hHrIY0rPUTAG6hQg+JPEC0lRQo+ZXxYIOays9dJll+H+afB
Z9k8nwIJrIos8hUvvDpZk5LBg76qCP3sK8OzqwDM1lbGf+y01xwlm4HTpvt2/6eiK+WNKwJs
XbfQO47Xd5AQguS1POVAr1etn9l7qVYNGVjgxrmRSuijWomgJ8uiUcURK+6uScMIHR77WVv4
AR7HyCTJ1lDT+gAe6y6cnDTiqGwHMfIHU4+ssy0HO3NMAf9AEcwzKtfn695E0uGY8xSx9pZ5
7MfBSRKjlw4m/VgguEnOMLBhSyXVQdKS4EOlz8KopUz/1hRHJjkjJ8wmSRerlkmmSwraSYON
UKcKosYfIJsLGBnmnGOrUONYPOHTXNHDv6EYSaCNjRCKxZ+zKPPZ1zTRZ34dRORSO2pklSBv
NYtkMi3ao8sUSSQRCb1HoYeGltqL44UY/J0VrxIBvmDZDUsLQ95CYH008QuIB7BPA4oZQ45U
wz5xwAH8uVHnn6T7AwB52VvjHAcILzJ50Ingz87KBxT4JrnFlFMXGHF5EksoCCEhkteQEPoy
h0OLEQckPSZoMIXGXRyy87JljyzXhOWSqHFAwOLFvqIqiMjigTKkzZMvXTwYGmE8aG1btQfC
jkuaHIDgSzDRCDKldRfeaKkGCKQeFZIo1AFnQzQhDnRzJUwNd/3hmO4/Pab9/VjEOPqjVv5N
1Q3SM4Vbu6U0bZHoXdTxoNFzpvldY4NFDlObJ2OTYDN6WztEDNmbJ22WulG+mAhulZLx03Cn
1tjbIGaG3Uca+bYH+2AquDcLx03KugGwtFvJsB9evhd0debJG672U8bl319cbJmutdsddbpB
vJgq742QM0sdjdu7d/zGfg8n
}
dmj.uxf:dmj-Kaleidoscope {
;
; Kaleidoscope Transformation
; This can be used to simulate many different
; kinds of symmetry.
;
; Changes:
; - When using "slice" mode, points not part of
; the slice will be colored using the solid
; color. You can use this to assemble several
; slices into the same image.
;
:ynRhin2ta12utxNQ03Ng/HGI/iWVrLRBIotqOIApOAGptBwq5ligCQt7s7yWukbJ5aFlv+O
D5eRallfp1PYJPkDnz5M3s3K0ucjt6Hv+KAyVGhHsrh7gVLWNYJbwQqpqWhfFskppru9VJwf
CTfnQXowl/wqkNDXw4FepRDPhpej9YfTJffn7QVKq9odDIcumKEILVo3eAi2BpDylfFzYXf4
DUUi2rMPhUcsoie/nO3NL+PNozH9DCB7muI9MhQWJKw2/m94+f7nf4DHj2vxyxN1ESUwcIdD
Uge6QjNTqFecAIeD0TqrvifCWN0PhWP/ISNdhgQR/ODykOvQniAw3Mo5Cyw6pfbdSHjJr/Ew
iqGLixI6/09IsXo9wK6c2L6ja5sojtPG9rvjhNMDWvJmNQ41vZFkhFWEdnwVOBnK254gvZAa
5WT1YOFyEkNi/kA+2A8+D0aG0WydxOF6AfJJKdFYLiYjy211qD93Oat7RtYuiKXg7uL8ut/J
R841Go2cuy0YJFaWPYWSsd56kZ3wSxyezdu2KovlFlhTpo0UXTMpUoyBTeA0EmL6DZbQH9qE
Csr7RYMv05RvsSf9X2e/zQuXRhVh5+Ryw/B+dhAxpTrso8/xI9i6hQtXcw1LL+Sp7Fx3rJ85
UyUcuRfWVxp5sjjG5lpx7kZInyCPwo01KO34w+MzNOjSyl5ebDuJAMu7v7V0m9PX2b4rtDAo
hepGHhpkZZU/VuSWP1J1RDJJLtkx04QwGqfr2Qd9n0pd9VZYuoR5DDc9SP1OfHM5jCFKzMuU
TNOhPpEV15y4hZV/186mdfp9z5N5z/7ju/iSf1kYzZtwKCdsHlvSF1h5w0DttrF9T8xTin3i
H68vPOinCOha++Pozkp0cjYrsupaHloJBvNBiZBia004B3C4LDpA+nP7Qa+ENzzj0dsCrU1P
boPRvIACUnFQ+JUoNIXmE/qJDPjDtMAJwyXeYCyEYC3xRfE6HoPDlNAX3N5Uav1fQFLs6QJA
P2/QwepS1VovDHTbHKqohfu2GceUfsBsScgKz8kL0z9QOsNE+WvpSRHG10bDQKo4OOiEr9l0
S4QYHiXl0aNWKF0Z3Va2rfB9cYF3zLnvPc+ZCKtkfVyI9B9xKi2tonqUE14U/2UaLjes68++
9uUv5ttthUBSYTchmJ0loww2/z4wRx7Cs43f8z3Pq2OPCh+1Wd6owaaok2p8bEN4D3L1Zm93
SNDFCbGny7WfMSS7cmCnXqLuE/OaFyRU7xu/NqwxnXuPulNkboKBoqJtk7+a38z4K3KS9CFM
Vq7+vASGzsdItsGjLpJwexG1/FQ8EMRW
}
jh.uxf:jh-tiles-deluxe {
; (c) 2007-2008 Jussi Härkönen
;
; This transform has been designed for easy creation and use of tiled images.
;
; 08-02-10 First version
; 08-02-23 Implemented View mode and screen coordinate parameters
; 08-03-02 Fixed some bugs in normalization/dernormalization calculations
; 08-03-13 Fixed a bug with Use screen coordinates mode when tile aspect > image aspect
; 08-03-18 Submitted to formula database
;
::JTO8lgn21m1avNSNX4vjE/HMtSQmSTaaXWh0LUURFhYl4moLwH4lP4MjTihZsjGPptBxPeOn
jvPXaCCY1+hd9Yfu9cu8YnN16V86/37+OM2nweTDfjg9oU8Ej3K4sH5tS+qahh++6aNvjJx9
85mdiyO2tsZn/ksqbbB7K4fuVI3strIu3t861kM/K6Lv77YVz986y918OhVYM75YcDjzWvXV
2J1KmeNrbrAWk0ULHWE3hUhLblTtukT7tjvCXRumNL18+M2HtY5VvaxSykY9NHw8vexrxPJq
Nip2yNLWCOXiYpDoqkr9uzDl8avrUJbEKDYTG2qDMYJlct0al4mHK++rcF7c8UeZ/9tiyeRr
oK6BKRTmdxwQf2W/ZE0gdmGtuIVKo+jnpTWn48YY+u9GxbiH2Fgj7LX25x4sddXuszCsx8Ec
TMj8Pg8BVFTpbb41y/wC+GM8nbr99ZcNyljLVKUdiWR1b1frTaiqHsSy7jJ25nm5OOvFMwa5
OGYC1i1dkl1SIwcGEd8Z1daWlAUVjUJ82q98+44DltCh6etutSqAv14kPLxX8xzonlGRzDWO
Fv3IVboaIK6llLy2xb5NoZdMVBpFUCJkYSQ130PlOgZep4ztSCfXkhK2tOJAgllY7EZWVxNF
5JRugfneHF4Xp760NuIP1Sa0A/pH2zqQC5O/HE09KaWShpLmXc6B9A0FF5VZltHPongXXlZN
hgf/meorWqFrBLTCCmtW3Ch8sqzYBnKow3qv3ZGP4RljhJfC7HBcdi6e20y2lL9CF755UoWI
5ywABEyFVYfcCLpJiBI0kWFfsOFoofLKDXWi0g5pVUAbQ46YO0sIef1NFjlVSqyWEMpmgSlS
uqUUT+LikB/M0M+YWSau2sbuIGFK6ljmk5Uqb2VLem1KgyG5jivb9ajorf7CIUXP7ON9tC2H
CpQydUKZYxixFH66PgzJyEoTAXXMcyCXtBHerAGGVSOM2e2GQMKclKxGIbkGkjF0Qcsto3MR
6w3yWuY51f8H96X9Kw0vL8BUZdtgMhgfjjh1PhcrKj53U9COgDUgGmeArWn9dC9gWZRWAB6P
rb5ld86Fsz3JfGAyZS1u9Q4COiB2FA9RBxMHMdimFhAgDKz01W+jpWCjMeUnkFQ0CtVSULXi
d2zCjVgQ1BDyT2ogNjFJ11gFBnC3ll3ioajwEMgfwBYhazUjtvhA/NR7OF6MBKntU/IUSaNJ
sM9XmHR/Lnf9vyem9LJrc9vuIP9xbEftO2jtfq19D2TozFacfjuSwevbZn9lAYUx20KrOLSU
Igej4um8eze5D5Vin3NjycnfOlnWUAJYzcw9c252jU4bFlqn2XI+6U4UOGo4B2yF/96hatwK
Jwetr+AhVmfHHX7LHc821/Dtz7U7bwSeDOykU6QSkbFl/OCTWbCqK077MyKRM7ZmWBGJkkZ2
qfyN4GQzCP+mAw3CA83psn7sC27/+wX5rMzoGWTZoAs9ZJtjKY/ff3V2f+nM68UvtX88XXUE
Sn++Jdl52RY6aJGIr1OqGnbXBaK2ufAgFk2jSjcVkfaaRKiJK5J0loW/E0fAJE7FSpuVl0yY
861lXuc0iUqwoXhYC+PZIDa53fkAym6mov9572BgeywPIVaFYn49OpMK0gtDbG3MsTuS7YMW
3gYyiHzH/89SmH4rfYvzN2c/HCpvUC9cWlW9BdOCND9wjaQnqREL3oAbVeczOu85fYatkU6k
/1iUJcYSJkV8MQC9Y9foB4v1eIhZ2D+4zyFvmG1CANcDbsLKSby4ORs5FDz2bxL+Z0+xxWRF
vnarohLV2UcDQZ0vnpjDo2vYqv7P+hjc8Dv0xzAKPskWmk2adKDdeOTNQM62ZTt507g0DMnS
vHmUvWVNx3PFgmaN6RTEaL1qOpavevBtToPQElmy8Sc+50Dtgdvna7pxqAXd2L48XnI0DTKU
AqDubviv3GyRXxhxejNg9oDVv5iJdIHR6JMNYO18Btd7f1zR6vc/Q2GvwtFnwVX3C3/PQiIw
XtPZijf7fH9qb90rAnOwDLhG2YUGzbIHEEdlg7HIswFFeJ5N4KUVi1891d09J6kd09POzO24
LE17fWcmNER3Ul5nF5wA+OXo/M6iIILnzsfyJWsRiXz7bYpDwsaxSsNjlr7lTlquMBHuCNQZ
AnL5m9borKgMtULYeh7OgsBnJHZHR/B3Kw0xvTcscJE+ikfQGEmFsg15OB3+f6Jt44d3lVgM
lk7nEop8t9YDEu4ffBKj3Rz6w2bLaNEIBeB7N0TWziRMr3ir1TWOCYWORuHAvL4Ww91ZrgPW
9b7NIbr4bNFeI8eyrjvaxZusHyByv1jNFJjjTMBxdxcejevqbQSyM4KvXuM+y6Ow/hAkTU7o
ziOiVHLYLZNC8S2KtbpLRJ96LxOauVMOgAjnUNqryYMHZlWX78ikO+DcF3Hkluu8D8GPr4oj
kNqYGMqoR22CEeVbKQLjXuVKIex9GgMmVan4ZNTPFvB2Il9WhPsf3hB23N+SS8HjBpxPBHzX
CMSJ/14WjytgE4WxOBRg3+rrYLl6lLRpgY1RSe8j+adzxRn3k/zBk58Y02WEaf8pBBg184vQ
jz7+5tYqBe5OR1lJPzQ2PYkv4kn4vuN0z9o9DNkgt1+k0IuMGIcHI2BwJ1jh15/yGDR7ULdg
Hf9AIPPGi3EdkoSOm31XNnQRU/5ijCW+Kz42Ohaqj2JKOmc8AmtRwI9iucZxYhrB+ypH0CdU
dcA2ph9eKA+IPVff3I7HF40A+/N8kM1eS5u2Hxc0UX8TTzc4fbTP8Itunktv1/XAsk619B==
}
dmj.ufm:dmj-NovaMandel {
;
; This is the Nova fractal (Mandelbrot form), a
; modified Newtonian-style fractal. The formula
; was first shown to me by Paul Derbyshire (who
; named it Nova). It has also appeared elsewhere
; under other names. Use this formula and the
; Switch feature to select a NovaJulia.
;
::dSc/ain2NSZbrpRQQc83HwvDD2Xkz0q9EJvpFLSpGIlmUopUoQIw6dj6W2b3L7unak8hPzs7
qxHqQEE9mn2fz8f2Tql+P16MAKMV1KcFs29YjwilwQIL/D5d2zXRzkT4xo2zO/dNZYkzLs+o
FlxUHOqrvCyGVbWiWYIlzAKnOfGc1YhUoATtXWJXTnj104laEmasQM8Bc6wuM6e0mtuTy8G8
26/CYdyVkvNPx/F6CjsoSsiiKLma3+dgPSAdxmC0BeP8ua5KUxJO+H3N+NWuHi9Xqgpmlo5h
stOOo23+trvKOnmIkKqzDjqn56yn2zwXgRJPxwKxpiGVMMv0rQii23aWIgsbE6SUNxa8dazu
njq6pyYElV/rbdzk7T/2tZaXNlUv5+qQsViVSPrMQ/88c2SNalmSZh0/EZNYqA1xYy6m37yk
mXJmp506d5mNgahVUBbXBo8Ek4a4oafHbF+jQ1gtjOTNEX1+pSSoL1+thL1zgFcGhVCUUMn2
LoA6BwfNNU11QjDB/cpD8G4+YJ285cqR8N2JnTBQVwKK8CVvwhj6yArvCdQlOC6xrqNaq3Pm
4BHR8PXgWhSBYKnAz8Jj0uFXQi6QawM5C0dItckFKhzJLAWVvB8PVjnC3d2M2D4vGtfEv59I
xNv/+EnCOOipLkVE+kKHe0BLlUzUI4BclxiHyLv0EarwofCClG9R60JoPcv5I2/FbNUy3yCy
vZRn3AojmYskpwpMLJOWqjTTjmkkZouABz0/38motqRJOEzWn5WK9FzjX1IVYz9IWX+ejSKC
J4wwLfe9Od6VcwotLTJZittjiFftxw07Pad2LcNEYyG=
}
tma.ucl:ThinOrbitTrapsII-Sam+tma(BOTH) {
; By Samuel Monnier, mods by Toby Marshall (ver 2.7, 16 Apr. 2008)
;
; new in 1.7: texture functionality extended--check hint and
; additional choices in the "Choose z type" texture params.
;
; new in 1.8: added a "Geometrix" texture based on code
; by Dennis Magar
;
; new in 1.81: optimized the Morph code and added a few
; enhancements to the fBm, Geometrix and Additional textures.
;
; new in 2.0: many new parameters and functions added under
; "Extra Shaping Parameters" to change the shapes and more
; importantly the appearance of the elements. Some of the
; "Super Shaper" params (#s2-4) have been renamed as,
; repsectively, "X Strength", "X Power", "Y Strength and
; "Y Power" for consistency. New "Color By" coloring modes
; have been added including a corrected Angle mode, Magnitude,
; Real and Imaginary, with some parameters and a function to
; vary them.
;
; new in 2.1: added some bells and whistles to the fBm texture
; section--check the hints...
;
; new in 2.3: added "limited iterations". Many thanks to
; Damien M. Jones for allowing me to use this code of his.
;
; new in 2.4: added pattern repeat param to limited iter code,
; adapted from Ron Barnett.
;
; new in 2.6: rationalized and standardized limited iter code.
;
; new in 2.7: added a "Fission" param, renamed "Closest Ppwer 1"
; to "Closest Power" and "Closest Power 2" to "Edge Definition".
; In addition, I found "Closest Power" to be redundant and therefore
; dropped it from this version.
;
; This is basically Samuel's "Thin Orbit Traps" with a lot of
; new trap shapes and added bells and whistles which I hope
; will act as enhancements to his original work. Here are some
; notes and tips:
;
; TRAP SHAPES: Included are all the trap shapes from Ken
; Childress' "Plane Curve Traps" (kcc3.ucl), many of which
; were adapted from the original "Thin Orbit Traps", as
; well as all the traps shapes from "Plane Curve Traps II"
; (tma.ucl). They contain all the modifying parameters and
; functions from those colorings, which can be accessed under
; "Trap Parameters".
;
; MODES: Samuel's original three modes have been retained.
; I've added a number of parameters specific to each mode,
; which appear under the heading "Mode Options" when the
; appropriate mode is selected.
;
; COLORINGS: I've added the possibility to color according
; to iteration, modulated iteration and angle. With
; modulated iter you can enter decimal values (as opposed to
; integers only). This retains the modulation but also creates
; a color phase shift across the elements--sort of a cross between
; modulated and normal iterated modes. You will also find a parameter
; to vary how much of the gradient is used in this process.
; It is called "Range Depth" and can be found under the heading
; "Coloring Parameters" when the "Modulated Iter" mode is active.
;
; GLOBAL PARAMETERS: These affect the image in all modes
; and colorings.
;
; ANGLE PARAMETERS: A number of things in here allow you
; to change the shading and visualization of elements
; when in the "Angle" Coloring (and visible only then).
;
; MASKING: There is a distance mask and also an "Extra Angle"
; mask that masks for angle values instead of distance, which
; should be used with the "Angle" coloring. This can be used
; concurrently with the normal mask if desired.This mask is
; extremely sensitive to mode changes, and the effective mask
; value may vary widely depending on the mode and trap chosen.
;
; EXTRA SHAPING PARAMETERS: Yet more parameters to change the
; trap shapes and behavior. These are hidden by default to
; make navigation on the tab easier.
;
; MORPH: I've included the code I stumbled across that
; changes the basic value of #Z, thereby changing the
; shape of the traps in (hopefully) interesting ways.
; Included in this version are the original Morph
; parameters and "Morph II" parameters.
;
; When "Morph II" is activated by default only
; "Morph function Z1" is active; you must set
; "Morph function Z2" & 3 to some function other than
; "zero" to activate them when they appear as the
; appropriate Morph choice is selected.
;
; When "Morph II" is active there is also the possibility
; of choosing the variable type for Z1-3 in any of the
; three positions where that secondary Z expression appears,
; via the "Z1(2,3)Type" parameters.
;
; TEXTURES: The texture parameters here are essentially
; taken straight from Michèle Dessureault' work, with a
; few added params. The "Additional" texture params are
; adapted from Dennis Magar. Note that the five different
; types of textures can be implemented simultaneously.
;
; When choosing texture initializations that inclue the
; variable "z" you have three choices, "#z", "Morph z"
; and "Trap z". Textures made with #z will not change
; when changes are made to parameter values. Using
; "Morph z" will change the textures when the morph
; params are changed, and using "Trap z" will change
; the textures both when morph params and some global
; params are changed.
;
; MISCELLANEOUS TIPS: (Just some things I have observed)
;
; "Iteration" and "Modulated Iter" colorings follow the
; trap shapes in "Closest" mode and the formula-produced
; iterations in "Sum". So the trap shapes in "Sum" can be
; colored by overlaying an identical layer of "Closest"
; with the desired coloring.
;
; Try altering the values of X and Y Exponent to change the
; width of the trapped elements. Sometimes this makes them
; appear more "Thingamajigs"-like.
;
; Using the "ceil" enumeration of the "Closest Function"
; will give a good and clean visualization of the current
; trap shape, iterated according to the formula.
;
; Many parameters and functions which seem either overly
; redundant or similar to others may "come to life"
; when other parameters and/or functions are changed.
;
; DISCLAIMER: While I know that this coloring includes
; a mind-numbing array of possibilities I believe it
; is possible to achieve interesting results using a
; minimal number of options. Wade into the parameter
; jungle at your own risk
;
; My thanks to Samuel for allowing me to tweak his
; work and distribute the result, to Ken Childress
; for letting me include his trap shape code and for
; his always good advice, as well as to Keith
; Mackay for inspiration and suggestions. On the
; texture front I must thank Michèle Dessureault and
; Dennis Magar first and foremost for their kind
; acquiescence in allowing me to lift their texturing
; code bodily and suture it in this coloring. Many
; thanks also to Damien M. Jones for allowing me to
; use his fBm texturing and to Andreas Lober for his
; permission to include his "Popgnarl" textures.
;
::R1gcpgn2s3zaTutNS+9tq9/A3s1FTRtc4wHSj9549GH7Nn3KxJ+intyu1tLThhCaEtpIpJpm
RSl/pff4AIpkIBaQCSR5Je9kqSZNgAg9L0o7GdD6H6n9f+7/dKKzDiQZKzUemy50/0fuylLj
mhVe2zUMV+4HP8XW0Hn3RTsVefxhz8nnPowMF/9zA9PSz29neRLjDwrVmV0m65/pzHV59Sa1
aXXLaapf4vW25dvodzxW+Jgd0ZrJ/N66U1Lzir2t1rr3PkFLAmBM7eZ7nNPNzzPv2beZc9pM
Jk83JYUg6fMBFOLaZ1OjXntKB/szPLfAxPTl8r/E5/z7T88rzf3VaqYYMA9m6/JFnq+0N1+z
ZzmxQaKghfNJM/BnB8oZYPRPa+1LF9obCRsPKuyrYP3zqKBefr2gt6A1aWCK+X3K6JW1fEVO
MfA+Z4EYKRWCrQQceTMSBzTmzMBz9n7Xvltk/jRc48kzr3i/5+MtkYmYy0HTfmWQbRMz81bv
mpFvteMtMb7MmWITDiZmvFdLdVWFJqrXf9uW2zK+1bRBrwp/v/xlo1Ua5Yz/VtnbGDyBN/AU
zf4OoWxJgM1N88iD4wueFu6WUthfdUUQOnPGTlCnjCSx1b3P8mqPYHPlTOJGlFua5u2+9/ug
ooYiSzcFhHwTyz/jbptS1dmtwiqsscuz7ZOKfZ4q5rC9U3aqfZ2djcvEvO2O/x5v0yHbpW2B
rieYmjQFEiyuYvrL2FdxaU5rh+29WgCvJXb9XZ+V5tqUAgQveziXPBQZGqVth+h7GjTE1Vbm
uqLurOMdVTcXnw0VDxddKTXdF31LK7Kt5o48mGvb07RVVi8d2mCy++Jps36Q9WXUv1g6tmoe
bA1bDR92Fq3uH69uNmhIDPWCygenID6diMo3JygenID6yTGeiEkBtORG06EZQrTkBtORG0kn
MYeuE0BjORHM6EdwoT0BjORHM6AdwUC6gbnoDudiO42J6gbnoDuioDF/CXuPIdK2WQTMznoP
u9jlTVutbfcr5Hzt7v81VrvoMUol62RVHQZbF7iBOqczlrPoimaYM+LR3wMmimKHTBSxgQWs
IktYEyCEhsbBhsgQI7mRILIEyWKEymFhcEjQ2gIkTLIkNEC50MCZDhQOiRIFEqi1J7MPZcZD
OqbtoN4UYwiThA81XDME9GHin3hh4oy0FdGjjKGy857wU1t202nU09JFPO35qyBORd+8iWf3
7oGiu1h2/pFN9+3n3UpVd5NFFdoJ7imu5mqGB++3X06iFHadq67eXBEMN/ZxxVtJMKqqZgL3
5z+Xtd8BJk9WKjQ10CWp36A9+6rF0bSf13y2bPvqaWkx008RKnBp7f/W8IHzcZPuC1c8sZVN
5tOuYxj6NNX6tPX1IMimLqQj+N30KcpJJcpJBOaI5cZIFOaIFOawijVW83gDFdhVrPgsa9Bk
VrPgsa9BkVrPgsa9+zqd6BrWbAZ1aDIrWbAZ1aDIrWbAZ1a9nVPpHsajBkVbMgsajBkVbMgs
ajBkVb0fW90ewqdHQWt7AyqdHQWt7AyqdHQWtb/Z1XwyqthY1foudqjXsoMwlAwrNE/lZC0b
fCYYqfouV0FGRrHH3Kco1EcoJBiY00EYIFiY0GiYwiIVYatsKk6CxwZzcTzW3XJKa263axmg
tuvaspZr7rHbCTbaFJYoqyXeTlUGTn5mDU1++qLsvac9VTYfN46rhw+6y1X3K99ASKO+1tp0
hSUFr2pFtOtp0pFdOypypFNOtpwpF9NtpupFtNypspq4Y3U10gPbdXTTDOt1dFNN41W31z0g
bbdXNTD+t1dtMN44GLXlRHDgKGBaYAUwIQ/Cg6FBaXAUuIQ3Cgqlm1s8kH0s8vBaW0GSNLaD
pmFthUzi2QqZRbI1so9gmFRny6DqW+sW1ixQqaxYIVtYMkqWMGSVLGDpqFjvsVt0QeL8gmlP
r1s4OkaWcHSNLuDpmF3hUzi7QqZx9LYNLH+RFUdfa/6/vKTwVK6TzkDCiWQYyz4Vfl/sylpv
3P2U5r/ayf9NPr4Pt2lvK3iTS9jCV+GFrzmWS/ptngpPBvLVlotpeJN9cRBB0UxFlRGVKFFy
SWhHtvf0czoMVdL+XdFznqEFiVCwppKZRK3EpcNeeUCW5OceC/Wds3twPAroWM0vhmj6jeqS
l3H5trsKFPTZVthVAf/hdpPMZMk5GReFhRZKerSSwhZBb2nex1HqS10OmiNPVJNSJNDlkx/O
KT64vR5SyvIwVIRIogwQJrEif+vpQ8oRf8j7zR5ykUWi/7pK41YvVZYl8J0jmPHrCnRIHZLw
pYSDEpgciB3EWnwXCK0Z5pFzV2C/UllowNVoo1nkDJf2hmIyr7JndiUmnl1l0yoYe0HEcp/+
pKzi6DwSaIX+5Qb16yuEp7zHBae55BjB8Fvsc4jGQND3Liz17/+qho8H72Ggiz5siQ8dKla7
51zXpqIeQh/DLSeQh/DK8fQh/vpV4TVevjL+HqxhEtTAzcUJJgFv0IXiiWox7lMJ8YS3vD/I
qw5Cs37pELyih8eke2Znt3Ts40Fo4i4gEGlsEFs3/OaCWre58w1qbNdvENak+lej0Iu0pa6r
F7bY+4z1uMJKbkxlp+bx18bqysi8iSX0ykm3nuPtSMrNNp7dU7QhCn+hkM1LJk2Ra55tOdOX
rquV/y4zHpdZsJxp28yFsS1EbaUZU55oPZUb2kPqPQH1Hoj6DFJu+6dZEPpPerVXP+y441Fe
KvOvDbq2hNqbodYTRH2Maf2gnz6o8yr2USPeegPOU5XQ3ipkldiSlFBOZuMpTolqq6GtLzpi
Pf27WlmZSoIzDnouuWrOjG9PPIq6S6hj6G3q9wiQinHOVddtWnk3qNBqVN1r+A7RjqNl6XSh
sI6C2652QNc6bRzUeFyPR5loNNiUs4kbOOxCxaK/TO9DFgrGDsOOHjXziFEyyIZh8krJ7e8L
+JYBAeeFxTB+6UQHGMZ0YAgucs2qcQeJrSrOiTgazR6KSC5rumsFqyXr8towbCEKNtD4VtYg
Yyrakr14CCL5HM0QC0IgPQFxUPziBjITnWB3suEquQ+5Uq4nted5SpZc+3sIios+FrSuF3kM
3aXWEfs6OcWTK5OHIyzUCkWivuqTq9oLGNyQEGzxHsLmmL4gTH6K0HDMPMLX6CJLElspRK2e
hFO2iOvyI7KAHF81ZxMCVbv8iFzC06yauWkOXRvjsIUyMlo5KvBlgI9X4K4MUoaOcwo9sQi1
mhgSVBqDz/s4XxKHk+C01r8WEJl4qKHwUCkMSOOCEzqigEmSJizOaiQKwgHXssEWc3ghlpDs
h0kR8TqskokZEB0Al3E5HmlKDlyBQn1eil9YG6IR8U06bqeaOheniJbCniCTpXx9iFooUlnP
jooCPrzbMO9ksxoL8cMhXAbSHxz/WYAGluQMmWTy0RrEzd53ZkbTEBrIrLPWsYmzSnCS5aQF
48TK72kFrfqPnX0BCzqEvFKfPeT7yzcm25KhFGlcfrzcYUMVaghOv9dSC5RLjRppStbB3yDt
idYZfitIUwhbNmzIudI0EJ4u+IEcJeQvyj0tHl2HLJ0LtubtGj5QTFtU9JQ7gIwEjLGJ0Es8
VrOaccWQTMeMR1N4scBffdynkHnbh3EOiq8U13RUiTsr+F+JeBY5M5g1asRjh33juloGgZRA
O/4U60EnFT1tmRXsp7s6gn2BiQUuz8vJKrdRLebR1VZ3IX0qf+VZjKEMdKoqqscxxwLlq7cD
4OCTZpc52tBCZyRiSX67p8zoNptYSEvGGhyGiVxoDLaoaz7FmcgfSk3CcmyrIc60m5u2wugw
vrkVjbQXHVNgsplutxbZX12bGUSUKZuzIbh1+2XQmw40BTYADFhcciX+1/NpssmTMacp35A2
W7KUOiXBedHhlDkjI+sfTjQdD+tMGwvFnRttsuczGLeHe4gZRANNmDdRrOratxguebP0a01O
Fa0Lx+rSIbtdP4qZZ8/c5MTSKYPx/aasieZChM0CPDmjpax6Qlrww6wQg1z3PJf7Ib2lZadx
dEN2NfkH7nndXU0smlZhIAk1zMGCZeeegNEpGj3OOa0I1KFmZf2EYKgaBvuuRATpRsrucupo
t7oMBVzxsmTOmJslgv7yFKXQ3dqmdk5vfTGyh44E+YeVuPBYxGMHbVgn/Scy9kSGt7NlM/lN
YaItyWgV+RMeWQz4+Ggw6ovzqQWZtHPqhQ6yI2/k8p5J8+hDLtWjsAEWIyaGGzcI6EEI3Plj
jONnjeBAHVP3pfwokyGGgR8evJHDZtXAaZ+Z4VEaquajhxxbqq2xaq63hyuG59+7BQ/oty+7
CiSwoMcvi0P0hv4cqNt7/OYT8Cp2phVamJEOi95DIcJl7wseY3hxqjbwof8bwMobuIgDlgu1
PbTjnCbVT5E65gMWgbp1TbwBB9XhSijk8gEAibiApnxyfQCMb3UGoauwE0e4a1BsndisUBiL
3ErZfbMKpZHvZ4a6ARL3Ss+AOTBlF4ip2a/mAiarmN2GOC9FEGIzIHLrCBqRQ19G3idppr4z
DhDvNlG1pn0hyVRJrS7eUv2HQVAT661RzumNIptc0s2sBgwA+oZN6/RzCS2+rhzwhZECH9kM
vOKA1Jh6CVRcxg2SkrlOg7oLHD+vSAzkUsXGN0m/0toguF5Oq2P1zkVQs9YbyQtPuIby6n3x
FczfAT3chaLPZ3m00eomatsqp20L1U/gf+lGfTMxK5+CDfoTZ/CbMAlXfyrlRJC4yh6M91A2
fqP4LOeNOxbVbZYhkm+N+BT/OJm+9a/UPcQAKEj+M1za2Atf+IXKIbeOzLykmnCKQpjRdmsj
Wnd7GIxRKcEnfDwe619rjiS8TXo8dowMU6mj6cz1lLrJO+zM/1RrSxLwo+FmxuoBohQM+ljW
gN9XLwVpruGRzf922b5LX7X+RcaWLmHI4or1GsjueQJPDMthaAMNBEPqEHhYyOrrzuSn4IaD
WijYIMxREMNF+ExdaOF5OCROsvpo6PpHiW63zDb+0kvcGng8l7nmREbeUoyfJcW6Dx3vx47r
fqjv/PtEfDS6zhX+gkLR65WmjT82CILonE2WgxFLGZcPLGp/vXHTU7xCpu6bdg4m60gtqcbV
OG2Z1clQtuPpp49JlHfJietWGTbcdayT3msdi3R3yQQvhNE0ylHCUDI6dKl2LCji1naSzaZJ
NrvPINvB55P3vlD1/LoUt144T123QLF3sF4MfPUwwmsE6099UOy0yacHyYCo44LLZwP0Dnk2
NRq9bcbOW2T3mDthO+LrGNa0Cw/cpxyUPcafym68E3ZUxZuZre2UtOXwf1oQCr1PTx16ntGh
BPtvYONgdKftyVI/A5quEjyYDBl7CAiqOAJHEw5VarC6YaDlYCn6AWOjBAB+ieRYEvdzxSaY
xBtOQa4kHagWBX8N80m+WjZvFjuZVQQvyHfJ2be3pdwUPo7prQhmrhD2U9CuY8JpUxb9pfve
l3pmmKs5GyBl6oisp5QfD6ybXG9esyP7HeTqcy5F+WVPAjagFgLkMKwyAdxqEY4qcTYTaIUk
VsnbWlUaIEjTohr6BzuKS2lj3sr3Gj8wKvEfdifaHr2RWpvdp1Nf9v95YBP+2YsXGyLALXB8
KwWUHe/3bxh2JaVKkXGXjawWseWXvvN2/90qbbVa8pskYWzHcc5AvPsi4Wws+XnGNVCn6HRJ
caI6QtAWtPpLoLGvlgv/MV2jeXY0dNdWSkb3i3eXQqsdS2a/OUQQ0dyUOxugZeoNkSoRF5Hm
MRNizghJ7i9u1RVbHyi/ZJ4MvFlnMVzkBQzBgSvjcdwMAL0OHAFlsYLfrPdaNoUegVBfnPhA
RT37jJq2aHXFm1zIafFalUZO4nwbJjmvSMk7WJovp56VYUysko4uImr1iYOopGd4yVgXQ34e
0ejrwhh+pKPPcTUI+/qLa8tpHncr68hsw6iRdJ498n6M4ulTa/ITqkz08nutc+Qd1CfiahHF
qQ+R4AY6ixpoaevaRRWEnX9xnyrTs1D+1J2VLSw4iyESOzu4TLBtd2dpzfZKJ2eCHJuelkUG
5XWgxBK+EZkkoV3sol8XnN3rYCmqVHyZdqn40dlsUB9/tpTko+LdyIZKVP4y0TXSakf8vpyS
B9j0UrafC7Bu0CXGjTSRhz6zhNb3QOL40hDbeS+dMHYyIwdsxATpjWbHbMQuWY1QOoyEBi8F
zyI888EvrofTTEWKh7MNj1MKTNZilGcGXL3FqGGF2d/23VndQZ7vWXKBhdRf2RTKP45PFTN4
Q+MtQHkosIEMsUSfn65J1tQoMZJ3u1ICuUAEkXc2jk1QG+IaClTcyi2rSj9n1jyQDaLPxJ9Q
9jditkmGLt0FIuKNPeeUgPKboCmVr1Iop4gZ1NXq7ECuaZL8R+d2FlOylBUAUJ8Ago9+ODN6
uupXT42Wd4sS3rVzWrX3cHf7K6tS98gNyokRdK3x+q2AOoLuAAneEGw/CUaqfofj5OsQny6f
Fq21acslL5ULXHZx384s2haUgo7i5l3kdy8XewA3UlmSDrppR+5Xbqv0PyLA3SSTwsplIhJ4
r2vGiMsEbZNEpMxLi8WEgJI8gdFiAlCL7DlGcWxwlsVtGoAtB46nzjeEFvCldkBFBMOgdLSH
8L0OuYdI7lQo3iSJ9fkYl2S8s2ujsZsvgmKoqwW224NgxRdVWytJus3Fdr8I7inssbcbN4Ug
SuYZt/Sdiz7bpxXOZjOcbchv1P4RSVl5M3FwOj6UmWCo8ZXMLdk56NFOcwMEtOg3+olRhzat
id5qQ3mLH3+mVGvc1yrvGfqzpm1CO0tcxvefWav8/LBnfzvWqqQA0bptTOiLRBPofgbBk06H
mwtbYTrXgOGi9B2ouTsjFV7ObgS5/xc6ft1k0RtHzTbei0rxeC/pPfO3uQuSQgEVEs0tyNNZ
rTcRGcx8W5dSnJuqyeLS5fziMp8W2ecT3BRw0RhnVvoNkk7ap4Vo44NKP3zzfm4gV9bqAB38
91GdVS73aHSbhxrI/IptbrDAL/5IM6dwyfO9M0PIRSCwfPhfi6z3/hq+6LjBx7s7zsn77eEG
C99444gct6fXTx04zuiwWss7JpIsZf/niiw+7pfasi8bPPqkN/Ea4aCiaAhGYW7sBwbaZRgw
I5OmPGWkZRy4vPlFk57QDZfhSDu30zsC7HwLD9T9EHHz9OJAEpoxCrVCBB6j1NSBRvu5juqv
JJ0BUlYbXSC2Lr5P/GwfKR2HA3x8XMUNEWJWEUTY8ZloO9KdBdKYZXpL0APIlCSftAtE5FF2
t6LxuhgB7IdBJ6AVNmy4LpqgQFMGMz0uoD0Ch30zsX7QSPhvvffTNE8xQga9gt03jblRIFsM
+EV0uW67jFFH3R6LGFUQG9DWZeGd0/LyTQsnAdNcYZcmVWgLT49BS0JRfY5ngABcBcZ0eEV6
gM3Ccgl41xc2vvBjS0z/yBI3p65IjKR+S+2G6GMXqoF5cMpN6b8TaM8YQ5QHciMIFsaDfXnL
I33M4wp+K58/sCNLp5Tzr9v3KcItrtgcDucDPglSaCPrOJ2yTSe6PHlynp3eR0SfatSG9bNa
hTkrJuINPwPWdzoRty81ofLSzJRZbZ1eo0a890S9DLcGnZ0ybU5bxJxEvtJ78IfWfyEcEQXb
MEndjjN5z1MOWicH3p0HrJlQtekxaBon55FYRe3cBvxNWL/tdZvyF536HuKlwyfRUK9XCA0c
GOrhMA5/MkoTuoGLnzuT38rOQXS9SWCLJIgapluBJk2hxQaDBKuzqki/DT9zmMucRYdlh8oj
axSUOTMoFFasf9VuWCB0pUA1i5KgrAO4JglQ24dKHKfVjN3/yIkti333U8t+l+HV+2mXSz2/
IrRMfdpPagWAIqfaARSHp/jEFXUFBHSPyTgjRK/58fsh/tfwwB+U9wk9wrV2/9nBaesV3nyI
NetiaBimCKpE/kkVxyVSNMeuv7S46QFx38372JdoOXo5IoSuFZ9crcmQF8YwrDEobJ8KBfdt
M3d+VduqQUF+2gQiD++YyK33eHKNz/9IpOTQHYrn5zjLdZ9uSTsjFyW9LNlVo7TKU+QKLb8k
5/KUzkicSBlJ45RivGGKFJnoDfLV3tcEFK7gAqVQxRRCIHRVBvTvnKaGO2ME9qkmO9kSyldz
nMqtukZI5IoQE60RQNP3gwpeokmu+6rCgjBTWI59IUmzUQm6GSQxeBmy4g5U0AXmAXJpvYiS
COgCQUrhbkHgbMTgzFbq49nWPmVnojUHM9Fcn9smoVOPuLLcoX08J+rpCkvG5FgWl0cVL1aW
WPW21RHyuA5iSmtWrXudyHsiruzP/uXt1CgaDgeWd4Emo5s9cg3I7XoVgKlr98bCxp+CQhHz
62addeGi+w4BE95xc59ps1GRdljM1CDtBKydLKZPuFGlsM3xJOjmPQMq2/lRzWFk7+YlB8R6
/+RRDJ38r6Dowis922DNKqJ+1HUd/BgGj/S0N1HDtlKj5gxz0hGuaeA6W6IzSWVYeOt5oY0s
ZFXMuR5BMXBg2s/9fo3jV/7j/HjA6PxrbV6LbVo36s1q0MzbNRAzcNR0k+Dr1ETXo/weNbMZ
2PsNFOUS/gUlP2N7G7mdjdX4g4BMdhAm+9LgRoY6HNFTfYBsSCm+RTw0PJEs/h+fvVCmEvBh
QXzIVDiYiAM97XAjIipd0iYanmFlaHtMm2pZRpxRTxMONUMjjmiZcaWVaMMrKNG8VlGDzqSj
BfVp7RLj5eakxcPaZM3TjMm7wIj5O4yYuDjM2xBYHMtbfsW/tmxcFhS8AJ53MGzNIA2pwYuj
FwOVGzNQEsGMmrLvhPpGzdfCYnCj5GqFlDuxcD1iyB3YuhiiN4GzNUrKNGmVlfKNm7+EwOFG
zNUyYDuxcDlMm7wIj9p0YuPhAWhxcMXkPbNDKi1agpq62//27bt522ILt/+W1+fAmZzIRKTJ
CQRJ7dmJrTcin4aSm43Yv52UjdBRCKhxkEMAgWkqyP99DvnTfBob0XQDSKZZb4qSEBQ3nb9p
bcOPdju97/kb8TAScjfGU/b8jKB2bG+5JxAFUCaPyDUx9sQVPkgVIBBVk0wfQaD/JSygVSGB
UKlgpEkVE56ZBmpYXDkUAETJUM3BSOO8isKkEv1uQSZcgLAC2BK+HWjX/usFqb/mTOLtObD5
s0ysNkzcryfUP1U60RbRAaS6INoEY9AuREaqn6f4NkZmroJccyMrWeiYc0xDG437J5pLXiH4
nLTuOKt3TWOtbfCDeN9OdfdgkmyJtpWh9ApRR8IN0/QHk9jKmuBpbLsVn7sI0fLFh+7HR4Zw
g15xkvbCpJ6KLfzsontY8WZp5OYeTEnNHRicShXVA4Vdk/JP56uMqMEe34EqPGt9WcSg4+o+
ST+DzffK4oDqSvjHMiTsSf1pLGT9oYrqhiFhm3XUKiv+JRrXHIuG1g3nx5J0cNOeZHhV3FX7
8P5wyq73VURFWUZCqj4MQKwAJZrq5jScRabm0FNAC/i3wzNEpJrIfO+KGCyDENHfaYPg4HWM
Wn9g8gP9sHjjinpzcg3/TPrhk2I1bBfwne2DMHBdmDSuD6sGKs5jJzjq9pSAaMT0fUaZ+jPe
sD2dZ4MOwxXZfyh0Ajx1zOPkADvuuU4MGoRhVWS4Fb5qK68whxVGEusRSSp7URzSyiy4GOoA
lSh3fxbe8i3UMJDw/4XrsaWw/hU+N435zN+i3KgcvP7GpiFnHlKa1xbifqbC57KEQvwiaSQ0
fWcqRB/J5XlGldVysJ3LF9vL0BJ37P9n8eAj6vf1CtAa8f+fMNeR4s/7/z/DQFEET8q1g78g
igUvJfzSia/Z3w7gS+ewO8wP7m+PJfdcIuc9h/eB21A+7YfpuaF1/7TSXelXVigQp0Ai8KQU
VpRjJBasqSFaDwWRqPTHtCaIx+awbw37QWfavkFz20tCZn0YCGUDBJD4ZhmifwHkuC5CZjzI
DkxU+ayn4Q+a/DzvBPD/iWHOxvyqaMXIJJxq6TTtUoiHxIJJdyy7HojgBuQw+NggDdhg9aAB
PVHBrUxCJsCj0SwRWM/rta9PzSN3YtmnrTJWXtBbjNx+RWJRfXIxj1J/F1ofVaq1BcgVxonL
ihvvVaciT0IwquciT6yQryxrdSOO1mcwoRJR1TjRO5dAu12IyZO5fUDROXn2UWH3cRekTuI1
IJP2JfE7EJYgd1xJvkAterbaWrTQgVi4WrTwQ3ad2YVdO1qk4WrTwIrExxWnzcr1pq6I+S1p
zSCz9uJlHTIU7P/wnk/uT8H09knkn1jPeFrgxc0mrpgpoEB/MJ9wbS7K+kYhnE3V4V7jLi7r
osh+Ekfvx7Isa99C6ey48KFJQsIHJWExv7UT07zrneFFRIDJWZHiLnffpbdKeLWzFasksKR3
U9OX5VETSa0yowCpBfwVenUGfBt8TJtUogdVlHQaZ08gbCRFC08jQd7IUoh/3pdBaX4JTkrI
sy3EKkDO00BtJTTFS4l2umKkBMWsYsYxdFn0Tazcs4tIW/obKvl8HGsH12LVAh8prU6mw3h1
x3TtyXxLIWZcf6jejVLyjnB34L4jVK15q87E/mw+c09zXPEuE/oDLzrOcyk3kd5CsT90wChj
UdtVtCn+z/Y4iJJzp1ivrZcVYWYKmT2nlK808o15rSjeT6C8RH771z7J4v7xmgFat6eEtTO7
KC/+zeT/q580yAp5i55rz9eA4Pzt/pkeXDeofXvXTLB9Ec8EvHP44ySFoUqs8olylinIxpVS
9raufnySb4UWaDnKPOZJJqk9X10/0THVyYL/vmQj6SAsp0yeGgOblslDYlkAbENDqjmF5Bai
sVTEEcbiXELnN4ypXgUj0R5x0/8IhcZeU3ek6lNOEcK7hurHRuRy0pZR5yyvA991R/HVNTpH
dEjvVys6x64q6ZUdtSRgbSR/bXpYobSRvbXp4U9SRFuVYLqId7LpYkV/u17qb3ZWJ/mdl8nr
3Guuq78GbWNH4zjqhP93T85x6NXFktfVGvtjGMoGFq3eSh89rhRnsvYUQNmuT2Xmuh1oRvef
pRnWjG969lGNyxeRFJlt1q0ZO2Pa35056NelEev1V6RO2Va31pH7YfpdmTBDqz6tv6NFYY8h
N7dfvgga40ez3LYor+eb2Vr3p1oT7NfvgR1wp9nv3Zu67tzWvztGcyy41RzaWAKybgZUkLyW
NfOiXyxDqiBS0vjwmUef8M6NmABGQ2SEdu+qYglHioEMQAkg/s3ko8o054+yIUzoLjShsmTS
nEvA3mpnmgXmuIKND33LyIbSai1ObVKZ9gFv4SvllPgKcXseQ5CE9i5pTJ7+Wkf4fIYtwVj4
nDOFnpUxND4YrRM18KGbuiYi4I/+LSqnHTGw//RyVQCKDW93op+ERB//2rPXjJ59TZ3TyTyH
bUDpFcDvgTMUw0SbIq4e9Z4FWcnuK1o04JVji7oWDiUjcqPRWCVJJpAb4F4CF1ZwAme/asdi
sqMA95sRjGeGogga2V9BKExnRE/dhID8tLJ+OJJ+2lEXIylvBsKvhqSDEF9eDOOYEUrR+BIu
rj0VTfeN9baNH4z5pfT5Jvm+Ntmge6z0zj8bum6z00GXXQXZ81/otQbZ8th1dC+NygjE/nFW
kUk757dCMEZa+hw/7QWzPu76WepvYnvSHE+v6hEqaB8LKgf1Cont+ys1Xlt+Fs1XPb9LYrvz
sFd8E1WfVt1vQb91rt+FarvzarMb9VZrfBb91zW/C26rht0W9V8hI7V0adEZER+1+Vrx7o1w
nWC/K1wXTNWFIxDfWN8LuWlHBS8oSN81Ujs1QNQbFwnuIU3DBvc439CUetQ2GeR3IU0N6KKO
vKrwgZyW37w353flvSRwYjWFwLSQ/ViUhFeD5PH5dYIWsN9O8i+hd72DjxRga0IeI/hFNVek
QoH0oww/fPEf9T0UE6EX0vENT4d5k4jKgilNzAQNLmZAGI/9ICpZkYfzs45x4cBMQDx+rSU+
zFqgysqxJHbqQKXMZVlOcOVEuTXFR7PPJaM8u/Z8JYBuEVkiJYkDRdQNzvQADO6AGc0BqocH
4y8LonOqkx28L0EaU38L0UaZf+Fc2K1g5XoR0095XwEZr6VDOMvRdCGmI8tflveE9PnKgt8p
dlFTRy4bgMnWFg6TPiR+KAaPyCxDcm49bOxH6Mx71cifqRiXhIFSeFmaj4jqrpbtLtcnVHV2
4CVO3oiuuaD/GHUtHVP563Ay9Yj64GZyVSfbkzfQ9iXvGIe++1TvTaC9CqXfPpJ67w6lvX3E
5706lvX3E5bk7efF4FZlgn5u/nbE8cjacR9bmL4jc3F0NJ8xu7D6EBDG4gK3EvwAz9S2sVty
BB1TwG1KHMsBtyu0RJ406lwG1KHMqeC2sW5zaQrsiKLDMKn28N4hBC5AgEf5k+kvFxlT6RKH
B01unU+7qfEUiEzXlYUU02KqFoSN6XN6WRthqUj+N5uVU7UNUj1sAFrCNdlojasIqptKQ85B
2Y3ZNmd92F2duC7O62kdPq5GTNeXuzvH3cr5OxP/BN3eubM0vx9H117vBMs5DA0b3Yo6YEHd
7ywTbuJdX6T4Pq5W0difn1cD6Oxvzb6bz2RP0H1U+tj+LqDycUz5ne2pPMhs4biILRXFGfSx
z1uMn5grBFCnWVK8Z9WOpKDUA+Tqq/VxL+8yKoflVzlZVw/qKPiw/B3prC9qMPly1mAtp4t6
RYc488iFk9hP5yFhpzeDcPxV4MH4ph1ga4QGITDZgMNUF7qhugaoe6oSGboG2EaUHqhNlW2R
N0ZrUDQNsR00dUDNR2qoGS9aUxNk/15cONw/zEQv6MZJUmC+KU4sqofd2RMKXBtsztR3AHob
/tguDdgu92C6eqG6Wp+FybF+ZlujM3Ct2pGozMTgNORgz1oZrr20uxFd5R2oU/mQpHrRp2IT
pSSblS+DsJU9aiQ57bjUn0ISFYTBPpRK4QbS1rbkUdqNp61NSqG5iXVB4D2p1Zu4X5ItOXjK
WU1G6a9IXctcUuesL+WuRrgBW1xG5dFoznfz21OGEYjWNrdMYoTtjO52HcqN5qZtjBjsRrG2
OemTtjupjnb+1ESrVyzMC6HlgYQ/4qOsCyfYE9sMX6JUSMVBhrqmaiCJ9rSSW2H7CNDqSTWC
k7CNHWlmMgT2FaeqCNZ4BSKZVa3QiPq5CsumzA5iEULfPr58t3+gvnXhvHdHx3HtF2Zd+jNm
xPeLM07FG7PYLM17HO738e2aHQp5ceLGTp3+hzVH55o7MOf6WYt3Hdp8HtFG79CjPbLs17FG
fejfz6eyv+RNmx7JnrqDfd02xYT81Y0MaQnEZ/JCPXLUhrXX85BUg93mNFfAAdl/cRW/Dzm4
JwFyHLSOupK/X5SSy48w3FlV97GhUI5vdEeFJ/tvwYgMuset0nXBj+TTSnXJoNmWsGPedyiX
cII/w/Oi97uSfPGEdbzGWJJc6oifKWU5mYOX9rnrzSuE/9RejTyIsve+jVh9TsSURpWZJoeZ
hLC1KBlstOuOsBWA8sZvxWAsSOaBOtByC3ZoRySpjRXz7oJSL9XBEvLWYBdVhPHKhw6XA436
SOw01qkx3ByI2WbgMBOJNH5AlG6El65AlO1JK13BKNyJKdiDU6MnM3n4QD35OJTv2BZ6ROJT
v2BZ6xOQJfXUO/BORJHUOfzO40j5Zwr0PGdnO5wgef2Sx9qIkciVp6XhnM5Ev6Ixh0V2jk0J
mm7A9HcJ8PqjGm76Q77dUJp6eyw6o2p2oGQjeCU71QjxwuGn1QKltMVkQBYT7noB/zFrI+te
UOpfmmQRynWwlRJzjwzyehpLMPVezQiPZTj29ZKc0+ZmCHtHmpwR7xZKc0+dmCHdLMThj27z
UYxedXq6cEmnW8hU77z+7Axto1BVWjhlExXLRGosrxO4IO5ru9v6bk2BuS7+Nn2Ddl29aOtP
1AtrShS5uKXNT7R10ot2h2szqhGbcgGnbQHXr2gvpet6R1St+NgaP2g+VW1+qMwsH+gaFueN
Q489rlcn0EyFUryeSTU2h1KdvuJS3p1KdvuJS3I396KmvEbi3Zu735E9O3g6KU5G569I3d9c
S+es7+euQvgB1rvNx7LwUfjNbX7bQQt0rRtvBDbQ77GH03TrV+aU7bwoapXzafPrBtvq6rmI
Y57QokT7h38uwZriy+nf2iVzRQt67/vqWGgv4t4bVwlbWwAXvJ9Q4xdhoeyGPWoUxl7UwYpi
1WKgUibTwsNKY+2Es0GFMbrCOdQKZrBBrI7bZOeQMZv/4m4ibl6T2KSJlilrUsfsPvUsbFeT
4N8jcQQG9zXfIS+uktnmFBwlIpppAWpsDhHi3S6hk7gfgzZXBNAQ+E0kuu4mLUYDIfaZTlyi
sBvl0DJ3hzmgC2M+mx1xGwE0VXZR2g3S6hk7wZzwC2M5mJ1Z0KYTlyisBvl0DJ3hzmTLYTMf
bRWcTRO8dhvDTsG/zJkkuWWam98Wfxa8rgn8H2jDEe80U2enMxpAJC7+xstO5Y57DNmhFtqH
Rt+HRtOHRk+ucugWHe6s3A/D7Wh/pHVWOiQqig/JO6ktVZhNWZ6uZMb/MWaHNm3HJVaTXm15
IWcjOm5GisW/WmsWSxaHkql8Z4U9yoWxh5uaWcYOam4sQGTi75yC74yPhuJJg3lnWPZEyj97
dIayZTVF+zeBkBGXiZnhpqXu1LDZzXAdAPbsqUDzRWmeUqBU9zFoQJxFEfOPUWWzSMRcFNnT
cLMcQk25lrm3RQjRPUx905jk2pEOSadOfkEQLV3yTPSQiIJxGOP/E/Bw/EPnavrYrmzi14Fv
LvAcFF7R5hh0Tmn9W8wQaSPi0TOJkI3UCX7PLLZWsxjsoCHVORhXxSI7X4NxZCquc0lOtfrV
F+i9iKUVD+L7iGU2kQfL9nFvYSEOHG5zXW2SNOZWyq0C0TCXMOqExk54c8hqVvJiHyVC157x
zJuw8oJePHCIpSNpHDskin+sFHSAeZMdrkDcfGnlnGt4y8rgOojpHArf+TWAF+kDp/5Jjn01
AbRmFKeuvutc0C99OEas7anBFHxWbHbArn3+mVObD/ScDfv8YruAGcOEZW5yJHO44z6tMu3T
CXc5wiv5iDn8XO8Y8wrDu7pd7Xi4e5XTLRfmugeim1lUS/eBKvIRyKQ6Z1t3ESpDspPQsQJp
pRjBPSB75VR5hC6HH9zabyK7RSIB2hcQViKoVYrEpcd7RmABdKFrW+85YoH5Oa0ZKlM54EeJ
kyxqJV7rSjfjLMuroaYxPKcqYLKXlU3NybsLmw5GNj+0UQ2K6r86nApBUxxPDwmvDZDTDuTl
jsG48QrVHomR3vYXpbNBQ4lTm8581832ylD+9Rm7EhkeLwR84C6C/a9ahAJ6i/P899B90+E5
ADOyLdRPI2rnkqt0SSssAMs3h3NyQXp3MyEmKtIlGvJRTDXNL//mEFVc+MMGqOv6q4Fe/Q6F
Q4n4Uhk598n3haqXGmGO37dRp4ZBK7k9IcJ+6Jse/E9+M7Pj0wDCOmh+17izivgwjiDUEQUI
EFp/VRh42XKJfvSq+9YT7PQuEPlWhKUUuSRCb/VkHsmKCzA+YVrw9sLi/S5ZGaxv8O8pyjuK
KncmGO5dD1yUvXgPH3OXzU4PvPhOCCDIoQvDAJ8AvXiny7dkFdsfZnOkTleyvPq8n0zq+qnZ
8lCB3KcFusjQrQUemHZ4Ic1XROS5J74sUmPv0OW2CW0ljEI4TQbhYqEyq3UQQ84nU9KqIR58
MKs4I9drh9gsTPBV5EBvb1jPBVpEFTU2YDkAGDaDR5hbqiwSmsyXtZZ1WDuLE7QcV8ARVx5z
a/APvS8mYSj8J/qgw8NzimHBS9PHPJ/KFuVsXEXT/OZuNVhLf5k/9KoLx/IJde4s4bC12Kph
ZNzFRQEWqKDvgsBv+swx5Jpqm1jD2b8+aFW/1RLyiz3YWj59i+SvJJXvwLES9cSca+GvrD34
lnAjTQsfQcOVdJJd5ASSYwxEOslqAtL20FT5AlrMECvrhnPPYkSVZsQfM3lA5ePcBIoWBI42
RAotf0DQblGR+466GIleQbLdger0lt2RKZMouRL9VUE9jUxif8vQnWXtvsYqmhS5qZlBTrqp
4yxvTHCyRd6grrWu2TPu4rcoobZ8r9qexh3nqf45buR9jMcgi4dI0l8hlnXXF9L59/iz8ITs
A2pMCRHjs1qfRIdXTPZVeGYgI9T5He0VUgI64tZe4ux+VQKakSHjbN7LgqklfMklrHMGbC7x
ZeRTuUj7ALEKwOABHRMd3qGyA13cAil3XHNFnQHdDnbwU+9JvDNVQ8hheLTgRtifXEOYXEtn
9lwlZwAgEtGtyaGzLDeJyMYscut8hsV28cBSvI6ywKkuCVyBNOD5AYQhxbB+MHf/NljzCTvU
gD3e9GpvrW+1nxZlBHLaxfG9Bqj9xT0mbjfB3uSnEMvslzgIxDJaJYd4unZ/5SzErkVFco8j
fbkQV8uYVOkP3kVjjKcZfoH4tuJZl31xzm5dV47iUpj07wuMFC/Gj6AEpTk6IgMZR2Uw0PVe
8ndw2X14bLsBcQB1AyDBjm+xLOegvirBIQB1EdCSrhaCTYM86e9MyYwRPQwOUDbzTXu0YAgv
KNeumwiG4g6pPrrnyfFXdZeRbdUHomEZzXtpyLgKQeVAYzqQrKiJpCyhM/DGmeagCTAxIKyO
i4vUpTX9JfWYGqkRngF1MGxe/xfYHE0qWUxm7F6SGkaV/RybWUUphVjH9XhO1jxBjXgMlt5T
zHrADapSnt5FifK9dXXHnfFOQ/VhZReZXFPN/49o2bzZfsauOEtGel1SbZ6wV9XhvrnSqijV
lMvrSu2b+qxXVVxTmKPwGU3503/nsQ3rwKCDYVG6bcgsmfwtpNCDymhboBvjpmyjmE8nmMpZ
8/LK6TUGStcgEjFPccU47PQeoagEQYEOwTjRvUAEqB2+S2j1EBzOyY9vOhyVTxf2MWqfMH6Y
aONgDfmNsNQCOtDqp0T4xLviUniMCt/CLtzoi5uw8JwwCfDMx3dirDrhrDvV46p1w1T3HcVv
DDBSKj+LHirillR0kg8JRedMNdaHufA/+sRAr84hGq2pGu/I7k7MDV7cD3/R2J3jNpsDM9Af
7E0PQsi486lkmXCPB7GFTGiYvSna588+nhjxA6/X2bDfAVIwXe4w9D43npUVe8QDV7UD3fkd
ydmhqduh7/I7k7xmU2BmegvdC6HIWRebIuMbEvRA/zmRfQvYyUIGwOjO8XODCsw7nxvnXIo1
5LhGbMhunuK9dYUspjfFGdDiNzXFOx7bDjT9+6wN4VpXABL8zQawdKjCBu9KwxIz7P59VkTz
8MIQ5vKCC1jRwvKGPr4EuaV2y4JlXPNZWMEFiEJJ3kMbIfV8lXVWd86FhpbEuMdCGyE63CmL
ytSuWiWryB35pzKrzTDvAi7KZhwNInsdzg3kGjRSVefIL5Fxe/AEmamINf6VhJZef5E8MwbS
H+1/vLmFFmdF7OrShY7+7RCsNOd8MJ18pQW4JxE5/rjTGTNdPNZ8VzigbT/9bjwmg8OYxhQC
AJiTQB6ksA0HKh+Hg1ee0EGpW8vBNCoAl3liSyCItbw36AtUL5tksMSyFqQ284xQw+bI0NFk
xocvvFKJ76MwrOHUYVqluacM+l9Cl7r/T/vFU8rjeX8sS2DJjFOHkK8XJgT0lqU6rTQ/sqqC
7uQOnLIXmGfB6K+1phXkRvea+1JJT0QvVzgkQg4bLI1q5XcR0sZl34/LNiYiY2X4WfD4OmrS
rvZTEPw9/RU0EsZuz3se8sw5k0KpOWw9eWY+FhjfL+LIytIExPFa93mtZZhhszfLN8dx5bYd
X968tQuAb8+yxjpwni3IdZigzM2oAGgXCDOISV42LRDzLwI+JEi4869qk0VltCfLMaR6FJzC
hf/8FIHgig9to3rkcPHTjLDhDDTLn2/ozfHktwCa93jWCRwi2vnx7M/3x0sTId+zWKSu/+CB
ntvLC1V0eCKfWG5OzXEnNmMKhwFeFzLKebIhyx4ktVS1vj6TA/5tlq43FTSmiLzfv3Y6DQwZ
mBmGgqo7sa7y3HlCFts/83DCB4tEuIKkANAkbe2VePLcReY2GydWlFhjXrSq/RUWugMgXi2R
cwsSB9H6vIcec5lTgndwCvvZxEpxi+h5RXWa0/h0FCOVd4cA+LcXuPkwVQYvC06FhQf1YhuE
lN94PB3Bobf84wyuIvIKMt/Lx3opRNfR8ixYMg4vS5DC8C0sVqlvANggf5rCjnV5SZZ7/3qw
JplvX4HTyKVzXGFe5KhOuvMKdJIs4xXK71MvMGTnidVJRJ7EAdPZNWn4FQHhjAfqM8X4dmn8
2IvfEaZIXtIKig+SBTWGOGxA4CodXUQf5SwlMEHNXooxvNi71jXlGiK7LJHcqF/o6w0Ck83X
FFdDUgfEJNJU+ny9afZeca6qll8KnAYiHpRRiIQypwQ0M/uyyfd4sZJXLeN4N+2QhbEDVDH2
SVw4RKg/al4AJvC8LmkmsU4GLgetef5iNJLi+f6QQFBoI4QjrwDJaeFdkJS3QSBTjiojgWSt
0opJEHGYgf6AhCEgeLyrVjgBKSpD49KBvH434gXpxrxS99QrFI+oY05VZruIUjiedMpLLXo+
5riimhzPwrSTWd5Vk7EXqt/MayQS/lXuIKLWNdrRVhIiCKuH+1ffstF5hv+w8UWkHlz30Eyk
qAt4YgnkTk3yY8x4+4Y0kdsiY6wM0LGNr6ipAfIEn0/+YvnXPOZ0STB3nAkchg698j7oD9Yf
JU6PE/WDoxCTTbVIO3uYA1llUugSh5SKpSBKj8tGKVNWYtkTKmW7EUMcX90qSAwWJXlQf1RQ
9BDbnqShD7QRLjUWrEUN2Z7UUKq4aKa1werr46Cfum6UN4Z7FXKSatGDhIvrjUyBhrjalRgb
lWShgrlOaiFnUOzkUKwcL0kGJvdxrSQ9apmc09Wpna076ooa88WJKPUf7FSOLArlVMvAdync
mCWJlcOD6ImYWE2JlceF6plSmGWJpaiH6oqmMQsS1qZVYvwiJJYtkyZFoTQ/eX0ZxkJsXwK5
ZoljVy8wKB1l8hOiKlzi9+6SZuojWS5yYV6EzuRLlEz3xOlqvtUMLJtMTKvJrkqSmU6omuEq
sTTW6U1UIh0rsXSxMv0Kgy5iZlYyZgZvoipipjvi5dZnSypkplWiJpZnYVTbrmSXmRn9CqL1
u6qh+k9waZsS6SuTrBRKdP7CS1E/sWapEA1x5KpEanYyZLqlcS5PanaSZUWTRrmspWeLkkoV
yVNNxaKc8SHaqriYvOBUAEf7pXUiTv+kLG7ceKSw6rnYck+rhSss01Sjkrrp2VQ7XfGOiw6b
PoaKm9apiK491kZAHXf9h5Xg0fd5koBq/aSMgjAfXPrRVLhIv2YqZY0bP4cZU0tX2qAsrNub
BI3rJqWJoxtX2CgutWMREt1JbKYcbnaSwfrleLcLvRBAxdscCYlrjxc0zrJq4FRGqdJC72je
VDE71EHllUAUBfumQjS59DsUKJcmtWSBIorJ2oKoRbt0FQSXTQUyoVXXwKIgzaDHgCBt9qLh
ocNhMIBes23d6y7l447WThE6or/ZyYAXH1s8iHTAGbnkSgGb/d/VAMu4DsteYXDsC76Oi7aL
wr3eAvaustIwe3hAbV8VrHh2PURgVBf16ho9jHEYvvC869fcXNX87UAY3KUVrHc2WcXbxdtJ
4u2C369C4W3dUWNCY6WhLrtMiqi3aLMr3JwsaHdVvW4VtVKOOruAvq58YUwZ1C8qmhgVPOr2
hX1CKs7KOrtwraE1lWUV3OUVfrN3i7RYmu3gKdPiQaLwotAjqHY0h2BGdXRGtFa0WoRv/BNq
51Nw9NgRNG1iMCp1CMaN4dqmS4usuTbBI9OflpaBBUZoSdAhUz0qFq0bXoSNXYNYm6KUp2wW
1tlvbLkptLV12lq6tySVdfC96n0go6G2pGJYLIqtgoevDEVXXsq1DiaTAK1J8RNGCeVgS3fL
/06wH1M0n6AKte8RNSvtEoUnxH1cMsCAle3t4SbxCVPWo33A60G+m1ACqGgOtjvpF6dfFozT
tC05Ptb4c+T3xwcaukVw70NYON/KcF8OrFmzWEM/UFBzbdMJ/YaVbas4fi9B0fLi+YzgTsdt
S2C8X7al8TG8+ahx7WDGvPVWgjVxczCka1FEtKmb2RVzEoC7Gmbb53897H80efAj2HXfP33X
AU72Fos7uVUoegy2Tff13JfW1axCzGEYtL6vPIX0fjshF2uBFmGkw2vQhdXvO9aEuVqgQ5C2
TfADr0OgWkrr8s77rnMFET2F8Q2PYcUPqFOvF79+BRi7CAJUAcoFnh3L4MUL8CGpVLOD3q4M
oicgZYBUhQwBkD+gb14UNj/b1s0bU24f0uyVaYa0uke8d0nc3H3p1uv3/wut+C1cPRUHWMF3
+5G6eOcnZNHud7726ne+WlFXDS7yl9Y/mlq09rpV/D3sbceihf/nmzdys0++NfHl0Zan207y
sVunOVnuuPWf/JC+dZLfefOXcNbDG2p4YvNCjdniiVbUqbx+0w2sOkbc4lNL2t7+g3cPgszt
HQ2uGRm1Qy+QKmMXCr5DWEZv3F6xdTkF3lhN0GFw2C537twB27vu3A4P7wuy02itz+YzNa/B
SRzfr1jq5tW78rt2OoEaY+8ukb8tV+u32D5fPakeHGe25xC3+u5NLw3G0prm+Tu1h6xW/Oj+
ld77M6X2mvzoPm7ccX41vrehuPYs/AbOP7mvjLuO3CeONc9FYe+7b603r2qppdwcLh1zp3fZ
3er4vYbXR7wmkfUDtuOZTMZRCsbR2VTiVbSdqhdtYScGEJRui8/s4sM4nVOMo/bRLiSDnNbj
XGLCb6RAd2yZx5ZEH9oZRo8npoyDa3s7a3s7aPHQaPHQ+E8LKd7/QR3r419B/RDS7JCyHurp
02Py12d3uPNOZQa/aY/EeTtrdXtz1vw2GdEMvXWJwfEvP31eoM3e8h0eoM/J1hyswBMiSsEx
pprW6YYHamf1G89IbOai2Npvd/DTmBPLFfZV4Zhg5JPpEF54p5ZeZwbQ4wgMD8QzwAYOg6wc
AtGVxlV3MQbwhTjEvaxYvpL8rC5b4FZeH2VGC5neF6YQxKmAheGXS5IHTQUGuRcqXa0MC4MQ
xT8iCRTH8g02zNlWokb31BffDkc7eUYLiy7AiyfIfUqUL0yt7kit7kitgM/JHIztncKtgM3e
yp0ixcLGztYM3ixcLGztYMvH2xLbRYevgwMCSrEctBVhrlqo3tA22iYrKittA2aYXs+9wS+1
GsutL43W4ZbXwvfIeAXfvGe22T66bXYadogt412iXbLetf4hX77zTTHzFuF42WgbbButF42P
MBu9OBf27X7wy3F4zuvgl1coDK4z2eQE9H3fRjd47R0YbX/strf2W4YbX2st4y2iLbLus3Tx
l9eBwsOA3qDndYt4x2eUh1iHbLest4x2iHbLest4x2iHbLest4x2iH79J8YP9+Aes3Gwxauk
t4yeLeQ2bhe6Amtd/MwZgZNGajMCt7fgZrFOWLgt+JAusOAHrzgtu942qBOWLwtKjLrDwxef
bbMYXwj9j3NnA3RZtWsV3+DVjqYruLrp1WQWbX0rt7Eutgs+pAIrue+1qiiqDgnaHe0C0d2N
wT3zYm6IMo7nz53tAGU7HIw7A4n3rw1sOcK3PHFbf0BY5OjT573Pd/2PJ/P5wT0IEhjUP1sg
HQ+9oOf0ucOdEOQzvYVBXwPsWXltLZyPVX8i3eYj9e8UZvprwvPYOF3f/8lN7AwMtfwy3LWg
cfIgIz7dEXqHoF3xQxMAJqgp4AGK7w2449m9lx7iFM2tHOGf6A8QjOlrv9BLoeMCcFEAnz93
c+9CgAs3XsSbfa632r2mdY/m7DjkbPzcytn9xTyt75VyiuUXvzS/cPtsP291Bx99E3ePmt1H
MZP1mT0Hf5E9+JjnPEztoZZEcrMLob5kgaPGb9ByuTRy2oZz6ee8l72Eoc3HToxg3O3cwbnf
PP4tKRbtzoo7SIGNcRRW3qT8WIogb331X7SXz59jRHenqu3ucXs8QcaFBcbPcm2RiMPDN1My
RtjD8IzjD8o2xB+Accg7JJH8h1AG3hjIsrdYfs5OsP+eeHWN9HViiVTHMzD+p4s/xrbrqnoR
PE/BmdR8HcP3Hpum0mYH8tYH87cf4stoWlriuhjXDOM4dF0q/2skLwF4CecLHhzVPhhls7wn
MGJ/hDe4guIXfSaSOejBkLyivhwdf6jCzpXU0CR/HpkvNepvQFhLDIFeA7fkbvM5awrHu9xD
kbqp/j+8hlcMPd5SCRBlFU1CV0Zt1z7fGCtqvL6fpRvfAXvBXJie/AU8xLI69DQpg8ow8iLq
KxU9usiE9+Bi6Nebqe/AqerhKM9ugjE9+B60bP2R7N4lEo4CrvxW0ROPdVk6Jw94E8DQYNj0
jVo7TxvtoUFid4gjBz3xD6qzHOw+RTOYuVYzPmkT6iowIgHbBLwGRFe8S4mK03froP4WoqCo
C49zxTyv6kvNCCCdL5lnHlf4INMtBd0UVncInfvnnjzhnWLn8IWPfxkYMhD6YWLWN/CwtkNm
VMnIeXDjLF5hj+sEfDUFn1rjnNzLD57xePFSe6iIPIaxJIsWjTW8v5jiedc+VUuEtOvKNoqE
MQ4k4slzC3AjTuRQcA6kFNeF2vlIWw4o5kisMJLGp+xdUbakNVqdO++w1lGK1eG0Os2MXzDX
HPf1cB5swkhFIURLHTtOMdMayDpmN0mONNZOhoJrAaMPJDMmVqtObbFT7sws8SbZl6vHNtXk
kMjzHwrIc2sSNXxO/dxzjxpI0itea4ssIZT9Xio3m5lBv5cceI2v4iZJjfbWFzssOCK9FMHV
gh47aJvTNj4Bska3Ch38uMKkY1XGif6EaVRR/HkgIFUUtnTMYAXfFUCv/ZPsQ/LFtjtXsOPG
rjvsa+qriz8ir29T0PKBClI5avpJpU5oazKRlyiJLOHiJ6Yvf+qoFEKewPG9Oc54RkPQ/P5l
M7QFaQ0jDYaLINQf2riIrficU+uICXXESCZFCoIzXBRIdsasMKeL4Lz1/OIZzPWDzmfUtAzP
Ww9v5HVlP0M/oLz+y8z6koY9fB9+e/Ip7kp30QN7D0Y2ngRkAPW9lPxcttQNL77z6cfSRPai
PAtL9D9CnCXCvvKGCnGU0SCMdVKOSAfIO41ZMCcs3znK3Y9Sw2t4kvNeCEjfJBq2GxaheIhN
qUPeRWOiXSR9xWkFM5j0qWqvUhP7Yvv07dhzWRypdg3Yyn3ug/W8ipxLAOwL/O18KMCeKVvV
af79PN5+SsF/LbjivNC1/V8UgWe/038jnOQKe+cMgBUgeKazxxtpdLSWzldq3yUeoGg9TqDC
p5Vas6DIvc4ApBQOQuSE5KDafhBIYv2n8+jLSDhG+c8uV5CuvCRrmX4FJvjNAob2Cxo6/vgL
inaOrmvPJlOVRk1mv5M5iWvcNwhD955yB3YDJ7ui7skUCWSaLpPdgYmYPZJJT2yCFWhA+VuO
Q+6fn8cO1EuflyNj8xzVwFylsUdJ+Vk7ejfiE1KSS9G/MZydjfk8NgofSkTsFuTmeZD3UYkr
97CT5JeTlvklhTmUe5iVTnF+ORqVK0LHIz3fvy1rBvC/1q3LYtepDf2w1yyHhGb0QD5m7iGV
CNKfmjZTbwvzSO1EPwHwlAMTWiLo0dWSLCLxY6THUIqkbSdBLKUYFCMQOzda+3FPv0TOQue/
el697+Veege6QdVLkmCXV8C0DVioonJvmSUH9QluBxDVquEP0qlJSP54eoFiF1Dt4SmHKzeV
SCB1vi5g5Xqcvg16NLM/SJpi5XqSjNWoR5zMi2RWmaw42GVU7rpEf5jeH+vDbahbXdccC7rK
ZivTNLKiUXmephkqSo+3kqwWPzRqNrklmUCsyQKrwtXkkOPcWnOzTmsa2qsOdGjrvuOQUHwN
jnHeppI6EFImaSh4jKdGjzg3PRFNJCspeVkz6irQoXIh71KKMken5b0C5VC5reEfPs7WKGK4
NPLwBpIYbliihkcSkkR7DGBTvo59DTnmFlrB1vHqBxv6bPqy2MDsFXyXLuMXF5MyQE7BGHZg
xvABh9Wir4g9Ks9rjzulty4bU0z2bZrM+iL9Mefal1PK+vcyvSXYVpQ48R5jP2phzlHNf9GF
pXPZ1BuuuBxNNGO794652yoxxRZ1NQeYe4igmOSe2S+gFUVVU+UbOXqOth/SD9ctxwqs73VZ
3veLyON4q/LNuDSj0PfN63tJD1AH+v0seiNS9C0oe7RuV27hE0rCz+GMsSPoHUleO/jkFRd6
c0h/yR/a3Od6z+Lcdf219pX/r9/Fy10/CPvHc/ic/xC2jVxTYV8EWFPhVxTYV81sn/a2zfN7
54f3iOpaDxBi0H+z681msDePTdehwtWkKzm9PFmGXFZlwsskxxEoQKm0hfBHzKmARf8CZY7o
/Lib+hBSz1gKJNTlvgHBlm26KhPx1wNG0wfdPrh/6dpGK8eHaObmiXuUX9eGUskUHDcuehxY
HZaKhG9rqfEZNW+ESl4GWJLZn9usb2j5evsHY2u7ybK0I9Zsqt/lfDagZr/dtGsdNBDN3EU7
bzeP79M0st/+loziPhg4niITmm1XmvZWkhYgDHnkdF9P7aQvVtiIUmaCa6bWvEiiYhmRO8Nt
YYaKb3oJ6p9PbFXJLL1qqv6640ZmXLOaXFcLDzjDnVuY3uKWdKUZr3E+02zXrcaePajUBdmt
79qgcjfo667ZFkvJLtTNoUt9t+UYpWbaJk9b1sEIrhTK4fN2In+l9Nn2YiT/6emTrXrfArfx
xlP6Xuc5sYcS/TohkS2JygKhz6LbaN/lObnotZjeR7X3fi2v2MRz4MMt8KrLOVasvFT8GM8Y
lJgEuTgydEKDtnLZxket8EmlfdQ1bMsyNuKoYCJdfOzk0IbLAVquVMlNE5u6knFocHhyQ1Ny
CG9a5JdB1tK3YYlbcVgtFXqupbRtpSwjZyEirB4nkxmTmllGBc235pcldsbTRTxqE8qADCT/
vwj+jn/cHzFipY6YDt1QPnqE9hfnOBd6MsTnT70ZUnOn1pz5d68oOdecnO+Dg/z3hYRsIJzn
nMRVQ+NfQZnUNQobO6Pu5P605m+k/A/v+3U3aA9rxuxRZSvgD7QfjP2d/GMIP/sc4HkFhj21
nOvzhJN4Gqx0XnSgzTRFlgI7EUMP8muUgMJ/AxyE/RtKk0CLC4dK0ljuWbAlqIX+tSVINGqO
g/WgrtGdupH9mnwv5JbfTUQRTUA0jylmIyfZj08FU+YpFTrieH3iF4YLmjaGpBcoqeN89SD4
wiGwhpbTD4INrcVpWQta6W3C6UD2QlGsaG4zdVTN5I1xU+q4wMthG/Q9fYCOkB2Q9MJwdmUr
zpCPD0zzhbLPH5APPVPP/NXtm82Q3sqjMwtgmztmbePzAzHurMvW7c+1qxij7iW68ZHsl+sQ
4eGYSg7MphGVIiSD8c42yTHslnagn/mrWzG4zmf9ITcLo5crxm3zMx8h7KzHZ6llJqLzqfYJ
Z/BMty7POqTn+d60rTnT6051NYYfZZwyEaZIm/pNfJ7U2SrdelCqjTBujbgxmZtceYdce4Ow
5R248p1x5fz3dWr2jSLPHVLPVN03ElmUDLbg9+salgh7uEMyNgPCzer6CN8wnMP7tlgdAXE0
kv+VGRtA5AS+C8GIkvmPyUoMa+Q6KldHyiXElWdkDXVQhLGH5h01xP9TGd0NEW8i3pumIf+i
3Flm7ZnVmgMQLzqoVqDi8lkPRI76UB4JLATdB+Jzh6w+02If8fFzLtMI0HQ4wBwrNmlQ2pAm
XmPTDMWBmMWWUAdf/e7ZVoONQfPgXFtOfVakNEFTXIsO+nex881CfGCTiGHOX468lKfgE8PZ
7LXEmO7N8S7YPUV5zSnVUSL6syk0irZSax15LL+dFJVUUr7TKXtnjBLaD73nvG4uaoFgfG+5
U9q1evIKdsup3yfg6k1ksIPNZGNT0w5Jro7/Zct+HDXMJZ+D9m+Vw/7rjGDJ0O7hevIZJxKQ
QiUArSetyZqZID47xrmvCTd/dRz2cs28zzr5jDfxENfc4oohq7XSEbHGYA3zRYVjJiuJM6d/
AbS11CJW5qdFczXGImRnXFy+ANkVwvDKli1CpP17z9FJe9tLU5RPzqvdRnGWK+6GhFeEOpJa
Z4zxZTJcW8Nif7+FQRRBl5IOgMkr6LdVvirwf0njhT5WJYn1d6spTn1Hh/v+w/bTf4OrPBvs
He5J4lvG/1rxfd0NY5QIvIlr3NdEI1J49xKsBL2Gaxwq2Dvk+U4ylxrjYT5qG0jofqmc8iOM
rrXM3IQuiMrqSO61lVhLNC3kvRDWHP9qE8L47Gdwj9Zg6QDOE+BZqzY/FnuXhf+ZCmI2/IB0
47d4TnBUHSXLZxsNQTEe3gq31w3usRDHE3FZnr/gbOQYNqlVsJBUIKHo6fdg3hXjfpy3gVYZ
aUGMeb3jZdxAOQ/AUF+EWJv0+AqyfAb+Ro3cMb+yZrHEyXxK5r1laywxYL/QYTmH5dJdGY5f
jlHwMtHQMDUaSvF/zpE/aN/sbE+ENz5iZa08QgvQkLo+vI/YqISaXOosYjTWg7d/S7LCsppn
vX9gMB/2dDnOls375dxGmUQVoHWSZJRhpucOcxqcdCF2efAroXnk+WqqK1Gx8FOgE2zDplKj
uzgObzD9WEhbqBezXBN8XFfJ+BHT/ehzBzfJZIb5BESgf9qgORqH2ucJee3jKc4k/9KcbbnJ
W+HguAiqdpZG/0Z5fQKsvaWyCw5AeTDoBlCO4VCOgEiGQI6ikcDvuUobKd3NiNyo3fxbEPCH
y1fhn/paC4yzToGB+dNumGyXT33C590ph0CVr6X7jekD499++kJ4e0FNMDcCxK6vRmHc5+b6
6upJOWdDWpM395rfcNyfQjlfc2iujk/LmnOdhviGgMoZNAvKdDdgmivAcovc44rijeHunqAe
v4urNGnX1sKGPLZ1kDwvBl80Yo7JZd+CWgZJJvdr1q4a1qgPA1KotKQRr470DmbvgIqSSroZ
PVSrSmmDvrBHAaMEi/GPcnLNl6MiCMfFUVZ/chO69xe/M+Gh542STxqGof/YSV2Qr/BwgbxL
2cQ/+ykYTyK6OUEdUwEgKvNq8tUc+ewzSj+9VRLGvBetIG4U3KiCLzecs3MIDiZRp97nQfdX
S6E6MfdMdH+y/Yc55FlGjvc5B7iDmDNFBtNF3iNFipsmkHqFrqiOfqQk638AUrwyLszygbBW
O2OLHeLwyJ2Z5p7KLxdPNl5TZdc4pS9vwRjX7x7hpMGn1d3u7gwZUE/LsJ+KjLYeph+eS8Hb
T8He/W8jWHO5RVF/ixt047IJ96WmxsdZJvpFEBCDPkeOayGcDD68wkUaqicNQXUc7Q0bW14H
bWjDuV0YpwUL2JUIZtyTYdX1bySB9BlOM/VKopiXPSLIqCF4MJXM4G6THRG1pM4lvRahB6l4
TcdfisJthQRof4GaZbj+eab0I8QBIHIWaZbT3kPbEbhkcXa2G79S4xa47odXdNyYu6qn3DPf
nQWMZshm2x5kz6oqs7cNbNe7gWT21a1KAG/cVC2DNyvZGuDTqlvk9ey9jnlw3lJhpZXuo6wh
vkGZ9rExrUzuBg7c1EU7spxwII7CTblbY3zIoD43LMPTWwvXTAdMOs/RwnKRmZ4Wji/ET90A
O+mCQ81wS+rgyEGY7DcY8r4LPYvhnfTt9I096mi648PSBuvqTVL49tg3fvB8+Jkwnh8t4DJW
kwVxNwMusBO/p3ZgzXiuth+UONikG85Hd3jP/+RDKfdm2NmtiXhqOs6Tjin1BSAEBbsDiiNQ
zO4O2/qFT6gbe3FafmwLb6TeefSlZX0jexRiXwKGjoVqdP6t51gdFtw9pyD7qeMprgAHJebe
VYsk+ImwIchA7xrL4AeBnSHJcRTjog5EBtBqL1GcHcjbGVeDD+tacl6HqJJ8NPy7GOQs97A4
pHI1ucg+jclK9tfC37Ajm80a274QM1C2/Yqt9jyoiZWw+Hzs9o4NOY/jJ22Keaiz+N6BtgmM
NOs7PxGzyM6F6QCSC+fZUuUQ/RCvHJH8m31TnyFYQ7wRk3DanWEtsBpVTUR5+rfRR3Vz6sul
+Enjfd0y8ramqyW9dkD5oEawiQIcYQLSxkwR+jvrJwmapduBUPOAc9RPWABV1HSxyEFMo0lW
C2+ZfzTdUFOV1VgkCCym7srz8Xikqslt84ni3McRImnhWclL8OZujNP8jdyoMyiRJ4O0oI1R
1c/zd0iwAfuYgYO6zi3oyY1IezddYwMdH2RchsJH6RuBHCHNMpV8+ylQSSl88yF/PutFZalr
6BwiveeNibl8yz2NUxKWkw1DLm8Sq2CyYLvU9g0gzm9P2YFilZmWH4YuNgHVt05dQFBtr51C
ZA708x3yd1pv39mvAYbcLACZ2wPtWtrSeWtom1ia29KUzWeJdRKUO0YRKZC3y8SVQqe2X6rn
d3v0XN13zK2UFjepBetzv7hXbfpDqwjMc7hH59m3kKKKD3eUUu/oFjHu9gtcPRLwMmO7OLNy
LYrVU6KJljsR5owWBwREUD5uXzCdLbJdR4oaOO/OLBS3MHOmI5WbTYpQK458X5fDoy3T7yYq
ahOTTF16HKGcv2JPoQfqutK5RGCnc6E4RPeC8KD1n97eC/uP93KSO5hnwKI+nTY0E/zrFu/r
p3XlA+8a4zJDZZKB/FuCU+VTwfDtd5Xds38owF6IylRJzZPtxevsXxVJlQ2rrsh9/FZaA+Pj
jdB3dLT2xCppTuTPpsZFGGie0orZejolCRNNehlsafJtAtTg0eYCks5EhGbtgXLemCVz0I5i
bBrBX/8BpC+w9spMoqb5W8OHD649gZOYnUUNNxanCBRFHz+zcP/nBPd1swK98p4051ZZyyxJ
pLo/KLeMZgXwbcRyKoLfHsUJXuPad0PtAFSp+5Fw/WZeBc0dSH2tltnbD4t6Yc5xmCltJ0VJ
qZObaZkOq0EQf7ufjlF9Aw+3g3tGlnGv2Iur5pNbTKogiOgpLl21gnbu6CetkH7fAdJykNOi
r2xmvUHpah2db3UtQ3WyxPewudPiRrr7RBmt7IotjaBttF02WQbvfAabeKFaH6AiFw6wukDp
T5jtjLr/g7egZlHz2VUNLGiSDys++39Qzu30iK4BmuOW977tCysNelrtXcaUF0LMKoBN4IB5
OQQHbUQHe/RQRUDr0f8e1Xz5O6xbXv9vv/NdutaP/D7k5JwXZNlXK54wg+U5r8s8x1+NdGtW
9L+js30FmZO9SrNeFm4vV4to4byyjWkFPdDdvXnxCvLiyvOCsi8sTziYHvGePfqn6OxwUMus
LWlC25+JQoAQEFhkYh41PPF3PHumjvN8SSC/7Y3KkNWz+HAKu5bqPHbZ9kGYHKow9mElHGPj
H5mTrICd9AkzlSzuHvhP+WHYkYMwLIBMztkYQL5eH4fAE1KYUpB+wUSMSl4FoqmFp7ol8Amx
7AeMU62dY4Mi19Lrm2Is3pmGpiTzHNbkFNxb9nh4Bpepp0Us5hKTV8DK5EP4sj9kb5r4tGHN
bCEoYqIyLFCLYAPBGGlN0G3NzaregNlX9NoHf+OrefH2PaL0uGPCfFNdoNNd4thmu1Nk7kqC
ZGNRTf5rII2YejZpYyTIpUwOv3YVCGJccUaOmeU1hGb+wOqSbgRpN49u0WVWHaUWHevTWP1o
se67fZlm30NqQG+buuP234k0uJ2GzC2vMzv6hONZXuNKcWBHVPWm/90tmdB6Y3znHepZ2tTq
3Qd8jvpFbklhln80NgjiTKQUih5woM24a2oDKmEjkr5DNToYx4w8oIP273wN4eIilDSmO9gm
7jLuNJgCej3mEKRG3ZuqHqfhd1ZRWpFp/lNYKEUprLzlwy6mIhQNHY7KsavOVCL1xvDU3xE4
OPH8VzAqldAJIcTwdXzENw0Stz0QuZ552enRe/NbDNbyGuTXh4Ws94sNwCVrmZb49z0NoOfD
7hJcw7AD+XNeGH2TT5w+aOH2LT6w+aWH2bT7w+aeH2vT8w+cmHs0xlB6pAgn1vzK4rJ4Idzx
wedSGM1ly1hm0MLDB1pHBNXPMMND3mqxQV1ogLGXeW54CJrmVnlOuquwz937L88m5WquIy93
7Li8dUiG7v3XQ47iERwnffs4urcadqsgm5o2LhVv0UrWza6Gq4O3jxqZIYfsou3dzgLrl7dy
WwnzCh5rQcuKc6r/N/dmWtlVin/VIm+kvVfQ1WAxCUeCdTf3aeylRk3VWJ+NIMhJcbJFtEC9
lXe8awQebyNQSzyMtELb8+KY98qupxQGk0MIb6ZhpQILgx5gninfVeck7P27FJwPw9llKGSI
U6LwtebI0UvJxooms4YPv/R0lkjaIpnDxrsa2KIilK0YZK8gxo3aoX2MIsncQIKnagISQLqH
x6j2VDUqhjzIo7V2+JtQRoECnMZ/vjLqw1//Lr7KHA==
}
for you
👍: 0 ⏩: 1
Fractalholic In reply to infinityfractals [2014-01-30 05:15:46 +0000 UTC]
Thanks! I'll have a look!!
👍: 0 ⏩: 1
Fractalholic In reply to infinityfractals [2014-01-30 05:15:10 +0000 UTC]
OH your very welcome!
👍: 0 ⏩: 1
infinityfractals In reply to Fractalholic [2014-01-30 06:57:11 +0000 UTC]
thanks so very much
👍: 0 ⏩: 0
GrannyOgg [2014-01-24 11:55:57 +0000 UTC]
Made this . I can't resist a bit of embellishment! I will be making more. Thanks again Rick
👍: 0 ⏩: 1
Fractalholic In reply to GrannyOgg [2014-01-24 12:28:39 +0000 UTC]
OH that's excellent!!!! Thanks so much for trying it out!!!! Can't wait to see what else ya do!!!
👍: 0 ⏩: 1
GrannyOgg In reply to Fractalholic [2014-01-24 13:33:47 +0000 UTC]
You have found an amasing combination of formula and mapping. The possibilities are endless
👍: 0 ⏩: 1
Fractalholic In reply to GrannyOgg [2014-01-24 13:40:51 +0000 UTC]
It is an awesome combination! I got suck in by them a long while back and can't seem to get free of it! lol
👍: 0 ⏩: 0
Fractalholic In reply to GrannyOgg [2014-01-24 12:27:54 +0000 UTC]
Great! Sorry for the confusion!!!
👍: 0 ⏩: 0
CopperColour [2014-01-23 12:15:51 +0000 UTC]
As you see I used your explanations but not your parameters which wouldn't open.
I made this simple one as a test.
Thanks a lot. I'll remember your method.
👍: 0 ⏩: 1
Fractalholic In reply to CopperColour [2014-01-23 15:39:54 +0000 UTC]
Excellent! I guess maybe one of the mapping formulas I'm using
from the wrong place again! Dang it!
👍: 0 ⏩: 0
GrannyOgg [2014-01-23 10:53:33 +0000 UTC]
This one is very lovely Rick. I had a go with the last lot of parameters you shared which I meant to upload but I can't find it now
👍: 0 ⏩: 1
Fractalholic In reply to GrannyOgg [2014-01-23 15:38:48 +0000 UTC]
Cool! I hope ya enjoyed them!!
👍: 0 ⏩: 0
Fractalholic In reply to fractal2cry [2014-01-22 17:36:49 +0000 UTC]
Thank you very much!!!!
👍: 0 ⏩: 0